salma-remyx's picture
update system prompt
583ea10
import spaces
import torch
import gradio as gr
from PIL import Image
from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor
from functools import lru_cache
MODEL_ID = "remyxai/SpaceThinker-Qwen2.5VL-3B"
@lru_cache(maxsize=1)
def _load_model():
"""Load and cache the model and processor inside GPU worker."""
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
MODEL_ID,
torch_dtype=torch.bfloat16
).to("cuda")
processor = AutoProcessor.from_pretrained(MODEL_ID)
return model, processor
@spaces.GPU
def gpu_inference(image_path: str, prompt: str) -> str:
"""Perform inference entirely in GPU subprocess."""
model, processor = _load_model()
# Load and preprocess image
image = Image.open(image_path).convert("RGB")
if image.width > 512:
ratio = image.height / image.width
image = image.resize((512, int(512 * ratio)), Image.Resampling.LANCZOS)
# Build conversation
system_msg = (
"You are VL-Thinking U+1F914, a helpful assistant with excellent reasoning ability.\n"
"A user asks you a question, and you should try to solve it."
"You should first think about the reasoning process in the mind and then provides the user with the answer.\n"
"The reasoning process and answer are enclosed within <think> </think> and <answer> </answer> tags, respectively, i.e., <think> reasoning process here </think> <answer> answer here </answer>."
)
conversation = [
{"role": "system", "content": [{"type": "text", "text": system_msg}]},
{"role": "user", "content": [
{"type": "image", "image": image},
{"type": "text", "text": prompt}
]}
]
# Tokenize, generate, decode
chat_input = processor.apply_chat_template(
conversation, tokenize=False, add_generation_prompt=True
)
inputs = processor(text=[chat_input], images=[image], return_tensors="pt").to("cuda")
output_ids = model.generate(**inputs, max_new_tokens=1024)
decoded = processor.batch_decode(
output_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False
)[0]
# Extract assistant portion
return decoded.split("assistant", 1)[-1].strip().lstrip(":").strip()
# Message handling
def add_message(history, user_input):
if history is None:
history = []
for f in user_input.get("files", []):
history.append({"role": "user", "content": (f,)})
text = user_input.get("text", "")
if text:
history.append({"role": "user", "content": text})
return history, gr.MultimodalTextbox(value=None)
def inference_interface(history):
if not history:
return history, gr.MultimodalTextbox(value=None)
# Last user text
user_text = next(
(m["content"] for m in reversed(history)
if m["role"] == "user" and isinstance(m["content"], str)),
None
)
if user_text is None:
return history, gr.MultimodalTextbox(value=None)
# Last user image
image_path = next(
(m["content"][0] for m in reversed(history)
if m["role"] == "user" and isinstance(m["content"], tuple)),
None
)
if image_path is None:
return history, gr.MultimodalTextbox(value=None)
# GPU inference
reply = gpu_inference(image_path, user_text)
history.append({"role": "assistant", "content": reply})
return history, gr.MultimodalTextbox(value=None)
def build_demo():
with gr.Blocks() as demo:
gr.Markdown("# SpaceThinker-Qwen2.5VL-3B")
chatbot = gr.Chatbot([], type="messages", label="Conversation")
chat_input = gr.MultimodalTextbox(
interactive=True,
file_types=["image"],
placeholder="Enter text and upload an image.",
show_label=True
)
submit_evt = chat_input.submit(
add_message, [chatbot, chat_input], [chatbot, chat_input]
)
submit_evt.then(
inference_interface, [chatbot], [chatbot, chat_input]
)
with gr.Row():
send_btn = gr.Button("Send")
clear_btn = gr.ClearButton([chatbot, chat_input])
send_click = send_btn.click(
add_message, [chatbot, chat_input], [chatbot, chat_input]
)
send_click.then(
inference_interface, [chatbot], [chatbot, chat_input]
)
return demo
if __name__ == "__main__":
demo = build_demo()
demo.launch(share=True)