Spaces:
Runtime error
Runtime error
File size: 11,109 Bytes
013216e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import hashlib
import os
import shutil
import tempfile
from pathlib import Path
from typing import Iterable, List, Optional, Tuple, Union
import av
import strawberry
from app_conf import (
DATA_PATH,
DEFAULT_VIDEO_PATH,
MAX_UPLOAD_VIDEO_DURATION,
UPLOADS_PATH,
UPLOADS_PREFIX,
)
from data.data_types import (
AddPointsInput,
CancelPropagateInVideo,
CancelPropagateInVideoInput,
ClearPointsInFrameInput,
ClearPointsInVideo,
ClearPointsInVideoInput,
CloseSession,
CloseSessionInput,
RemoveObjectInput,
RLEMask,
RLEMaskForObject,
RLEMaskListOnFrame,
StartSession,
StartSessionInput,
Video,
)
from data.loader import get_video
from data.store import get_videos
from data.transcoder import get_video_metadata, transcode, VideoMetadata
from inference.data_types import (
AddPointsRequest,
CancelPropagateInVideoRequest,
CancelPropagateInVideoRequest,
ClearPointsInFrameRequest,
ClearPointsInVideoRequest,
CloseSessionRequest,
RemoveObjectRequest,
StartSessionRequest,
)
from inference.predictor import InferenceAPI
from strawberry import relay
from strawberry.file_uploads import Upload
@strawberry.type
class Query:
@strawberry.field
def default_video(self) -> Video:
"""
Return the default video.
The default video can be set with the DEFAULT_VIDEO_PATH environment
variable. It will return the video that matches this path. If no video
is found, it will return the first video.
"""
all_videos = get_videos()
# Find the video that matches the default path and return that as
# default video.
for _, v in all_videos.items():
if v.path == DEFAULT_VIDEO_PATH:
return v
# Fallback is returning the first video
return next(iter(all_videos.values()))
@relay.connection(relay.ListConnection[Video])
def videos(
self,
) -> Iterable[Video]:
"""
Return all available videos.
"""
all_videos = get_videos()
return all_videos.values()
@strawberry.type
class Mutation:
@strawberry.mutation
def upload_video(
self,
file: Upload,
start_time_sec: Optional[float] = None,
duration_time_sec: Optional[float] = None,
) -> Video:
"""
Receive a video file and store it in the configured S3 bucket.
"""
max_time = MAX_UPLOAD_VIDEO_DURATION
filepath, file_key, vm = process_video(
file,
max_time=max_time,
start_time_sec=start_time_sec,
duration_time_sec=duration_time_sec,
)
video = get_video(
filepath,
UPLOADS_PATH,
file_key=file_key,
width=vm.width,
height=vm.height,
generate_poster=False,
)
return video
@strawberry.mutation
def start_session(
self, input: StartSessionInput, info: strawberry.Info
) -> StartSession:
inference_api: InferenceAPI = info.context["inference_api"]
request = StartSessionRequest(
type="start_session",
path=f"{DATA_PATH}/{input.path}",
)
response = inference_api.start_session(request=request)
return StartSession(session_id=response.session_id)
@strawberry.mutation
def close_session(
self, input: CloseSessionInput, info: strawberry.Info
) -> CloseSession:
inference_api: InferenceAPI = info.context["inference_api"]
request = CloseSessionRequest(
type="close_session",
session_id=input.session_id,
)
response = inference_api.close_session(request)
return CloseSession(success=response.success)
@strawberry.mutation
def add_points(
self, input: AddPointsInput, info: strawberry.Info
) -> RLEMaskListOnFrame:
inference_api: InferenceAPI = info.context["inference_api"]
request = AddPointsRequest(
type="add_points",
session_id=input.session_id,
frame_index=input.frame_index,
object_id=input.object_id,
points=input.points,
labels=input.labels,
clear_old_points=input.clear_old_points,
)
reponse = inference_api.add_points(request)
return RLEMaskListOnFrame(
frame_index=reponse.frame_index,
rle_mask_list=[
RLEMaskForObject(
object_id=r.object_id,
rle_mask=RLEMask(counts=r.mask.counts, size=r.mask.size, order="F"),
)
for r in reponse.results
],
)
@strawberry.mutation
def remove_object(
self, input: RemoveObjectInput, info: strawberry.Info
) -> List[RLEMaskListOnFrame]:
inference_api: InferenceAPI = info.context["inference_api"]
request = RemoveObjectRequest(
type="remove_object", session_id=input.session_id, object_id=input.object_id
)
response = inference_api.remove_object(request)
return [
RLEMaskListOnFrame(
frame_index=res.frame_index,
rle_mask_list=[
RLEMaskForObject(
object_id=r.object_id,
rle_mask=RLEMask(
counts=r.mask.counts, size=r.mask.size, order="F"
),
)
for r in res.results
],
)
for res in response.results
]
@strawberry.mutation
def clear_points_in_frame(
self, input: ClearPointsInFrameInput, info: strawberry.Info
) -> RLEMaskListOnFrame:
inference_api: InferenceAPI = info.context["inference_api"]
request = ClearPointsInFrameRequest(
type="clear_points_in_frame",
session_id=input.session_id,
frame_index=input.frame_index,
object_id=input.object_id,
)
response = inference_api.clear_points_in_frame(request)
return RLEMaskListOnFrame(
frame_index=response.frame_index,
rle_mask_list=[
RLEMaskForObject(
object_id=r.object_id,
rle_mask=RLEMask(counts=r.mask.counts, size=r.mask.size, order="F"),
)
for r in response.results
],
)
@strawberry.mutation
def clear_points_in_video(
self, input: ClearPointsInVideoInput, info: strawberry.Info
) -> ClearPointsInVideo:
inference_api: InferenceAPI = info.context["inference_api"]
request = ClearPointsInVideoRequest(
type="clear_points_in_video",
session_id=input.session_id,
)
response = inference_api.clear_points_in_video(request)
return ClearPointsInVideo(success=response.success)
@strawberry.mutation
def cancel_propagate_in_video(
self, input: CancelPropagateInVideoInput, info: strawberry.Info
) -> CancelPropagateInVideo:
inference_api: InferenceAPI = info.context["inference_api"]
request = CancelPropagateInVideoRequest(
type="cancel_propagate_in_video",
session_id=input.session_id,
)
response = inference_api.cancel_propagate_in_video(request)
return CancelPropagateInVideo(success=response.success)
def get_file_hash(video_path_or_file) -> str:
if isinstance(video_path_or_file, str):
with open(video_path_or_file, "rb") as in_f:
result = hashlib.sha256(in_f.read()).hexdigest()
else:
video_path_or_file.seek(0)
result = hashlib.sha256(video_path_or_file.read()).hexdigest()
return result
def _get_start_sec_duration_sec(
start_time_sec: Union[float, None],
duration_time_sec: Union[float, None],
max_time: float,
) -> Tuple[float, float]:
default_seek_t = int(os.environ.get("VIDEO_ENCODE_SEEK_TIME", "0"))
if start_time_sec is None:
start_time_sec = default_seek_t
if duration_time_sec is not None:
duration_time_sec = min(duration_time_sec, max_time)
else:
duration_time_sec = max_time
return start_time_sec, duration_time_sec
def process_video(
file: Upload,
max_time: float,
start_time_sec: Optional[float] = None,
duration_time_sec: Optional[float] = None,
) -> Tuple[Optional[str], str, str, VideoMetadata]:
"""
Process file upload including video trimming and content moderation checks.
Returns the filepath, s3_file_key, hash & video metaedata as a tuple.
"""
with tempfile.TemporaryDirectory() as tempdir:
in_path = f"{tempdir}/in.mp4"
out_path = f"{tempdir}/out.mp4"
with open(in_path, "wb") as in_f:
in_f.write(file.read())
try:
video_metadata = get_video_metadata(in_path)
except av.InvalidDataError:
raise Exception("not valid video file")
if video_metadata.num_video_streams == 0:
raise Exception("video container does not contain a video stream")
if video_metadata.width is None or video_metadata.height is None:
raise Exception("video container does not contain width or height metadata")
if video_metadata.duration_sec in (None, 0):
raise Exception("video container does time duration metadata")
start_time_sec, duration_time_sec = _get_start_sec_duration_sec(
max_time=max_time,
start_time_sec=start_time_sec,
duration_time_sec=duration_time_sec,
)
# Transcode video to make sure videos returned to the app are all in
# the same format, duration, resolution, fps.
transcode(
in_path,
out_path,
video_metadata,
seek_t=start_time_sec,
duration_time_sec=duration_time_sec,
)
os.remove(in_path) # don't need original video now
out_video_metadata = get_video_metadata(out_path)
if out_video_metadata.num_video_frames == 0:
raise Exception(
"transcode produced empty video; check seek time or your input video"
)
filepath = None
file_key = None
with open(out_path, "rb") as file_data:
file_hash = get_file_hash(file_data)
file_data.seek(0)
file_key = UPLOADS_PREFIX + "/" + f"{file_hash}.mp4"
filepath = os.path.join(UPLOADS_PATH, f"{file_hash}.mp4")
assert filepath is not None and file_key is not None
shutil.move(out_path, filepath)
return filepath, file_key, out_video_metadata
schema = strawberry.Schema(
query=Query,
mutation=Mutation,
)
|