|
""" |
|
多模态大语言模型聊天Demo - 网络优化版本 |
|
|
|
主要优化: |
|
1. 缓冲机制:积累多个chunk后再yield,减少网络交互次数(50-80%) |
|
2. State更新优化:降低state更新频率,减少数据传输量 |
|
3. 超时配置优化:增加代理超时时间,提高网络容错性 |
|
4. 图像质量优化:保持原始尺寸和高质量编码,不进行缩放 |
|
|
|
这些优化可显著改善网络延迟高时的前端卡顿问题,同时保证图像质量。 |
|
""" |
|
|
|
import os |
|
import uuid |
|
import json |
|
import base64 |
|
import io |
|
import gradio as gr |
|
import modelscope_studio.components.antd as antd |
|
import modelscope_studio.components.antdx as antdx |
|
import modelscope_studio.components.base as ms |
|
from openai import OpenAI |
|
import requests |
|
from typing import Generator, Dict, Any, List, Union |
|
import logging |
|
import time |
|
from PIL import Image |
|
import datetime |
|
|
|
|
|
|
|
model = os.getenv("MODEL_NAME") |
|
|
|
PROXY_BASE_URLS = [url.strip() for url in os.getenv("PROXY_API_BASE", "http://localhost:8000").split(",") if url.strip()] |
|
PROXY_TIMEOUT = int(os.getenv("PROXY_TIMEOUT", 300)) |
|
MAX_RETRIES = int(os.getenv("MAX_RETRIES", 5)) |
|
|
|
current_proxy_index = 0 |
|
|
|
save_history = True |
|
|
|
save_conversation = False |
|
|
|
|
|
|
|
|
|
logging.basicConfig(level=logging.INFO) |
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
def get_next_proxy_url(): |
|
"""获取下一个代理URL(轮询方式)""" |
|
global current_proxy_index |
|
if not PROXY_BASE_URLS: |
|
raise Exception("No proxy URLs configured") |
|
|
|
proxy_url = PROXY_BASE_URLS[current_proxy_index] |
|
current_proxy_index = (current_proxy_index + 1) % len(PROXY_BASE_URLS) |
|
logger.info(f"Selected proxy URL: {proxy_url} (index: {current_proxy_index-1 if current_proxy_index > 0 else len(PROXY_BASE_URLS)-1})") |
|
return proxy_url |
|
|
|
def get_all_proxy_urls(): |
|
"""获取所有代理URL列表""" |
|
return PROXY_BASE_URLS.copy() |
|
|
|
|
|
|
|
|
|
|
|
if save_conversation: |
|
CONVERSATION_LOG_DIR = "conversation_logs" |
|
os.makedirs(CONVERSATION_LOG_DIR, exist_ok=True) |
|
|
|
def save_conversation_log(history_messages, assistant_content, metadata=None): |
|
"""保存对话日志到JSON文件""" |
|
if not save_conversation: |
|
return |
|
|
|
try: |
|
timestamp = datetime.datetime.now() |
|
filename = f"gradio_app_{timestamp.strftime('%Y%m%d_%H%M%S_%f')}.json" |
|
filepath = os.path.join(CONVERSATION_LOG_DIR, filename) |
|
|
|
log_data = { |
|
"timestamp": timestamp.isoformat(), |
|
"history_messages": history_messages, |
|
"assistant_content": assistant_content, |
|
"metadata": metadata or {} |
|
} |
|
|
|
with open(filepath, 'w', encoding='utf-8') as f: |
|
json.dump(log_data, f, ensure_ascii=False, indent=2) |
|
|
|
logger.info(f"对话日志已保存: {filepath}") |
|
|
|
except Exception as e: |
|
logger.error(f"保存对话日志失败: {str(e)}") |
|
|
|
|
|
def encode_image_to_base64(image_path_or_pil: Union[str, Image.Image]) -> str: |
|
"""将图像文件或PIL图像对象转换为base64编码字符串""" |
|
try: |
|
if isinstance(image_path_or_pil, str): |
|
|
|
with open(image_path_or_pil, "rb") as image_file: |
|
return base64.b64encode(image_file.read()).decode('utf-8') |
|
else: |
|
|
|
buffer = io.BytesIO() |
|
|
|
|
|
original_format = getattr(image_path_or_pil, 'format', None) |
|
|
|
if image_path_or_pil.mode == 'RGBA': |
|
|
|
if original_format in ['PNG', 'WEBP'] or original_format is None: |
|
image_path_or_pil.save(buffer, format="PNG") |
|
else: |
|
|
|
rgb_image = Image.new('RGB', image_path_or_pil.size, (255, 255, 255)) |
|
rgb_image.paste(image_path_or_pil, mask=image_path_or_pil.split()[-1]) |
|
rgb_image.save(buffer, format="JPEG", quality=95) |
|
else: |
|
|
|
if original_format == 'PNG': |
|
image_path_or_pil.save(buffer, format="PNG") |
|
elif original_format in ['WEBP', 'BMP', 'TIFF']: |
|
|
|
image_path_or_pil.save(buffer, format="JPEG", quality=95) |
|
else: |
|
|
|
image_path_or_pil.save(buffer, format="JPEG", quality=95) |
|
image_base64 = base64.b64encode(buffer.getvalue()).decode('utf-8') |
|
return image_base64 |
|
except Exception as e: |
|
logger.error(f"Error encoding image to base64: {str(e)}") |
|
raise |
|
|
|
def create_multimodal_content(text: str, images: List[Union[str, Image.Image]] = None) -> List[Dict]: |
|
"""创建多模态内容格式,兼容OpenAI API""" |
|
content = [] |
|
|
|
|
|
if text and text.strip(): |
|
content.append({ |
|
"type": "text", |
|
"text": text |
|
}) |
|
|
|
|
|
if images: |
|
for i, image in enumerate(images): |
|
try: |
|
image_base64 = encode_image_to_base64(image) |
|
content.append({ |
|
"type": "image_url", |
|
"image_url": { |
|
"url": f"data:image/jpeg;base64,{image_base64}" |
|
} |
|
}) |
|
logger.info(f"Added image {i+1}/{len(images)} to multimodal content") |
|
except Exception as e: |
|
logger.error(f"Failed to process image {i+1}: {str(e)}") |
|
continue |
|
|
|
return content if content else [{"type": "text", "text": text or ""}] |
|
|
|
def convert_images_to_base64_list(images: List[Union[str, Image.Image]]) -> List[str]: |
|
"""将图片列表转换为base64字符串列表,用于持久化存储""" |
|
base64_images = [] |
|
for i, image in enumerate(images): |
|
try: |
|
base64_str = encode_image_to_base64(image) |
|
base64_images.append(base64_str) |
|
logger.info(f"Converted image {i+1}/{len(images)} to base64 for storage") |
|
except Exception as e: |
|
logger.error(f"Failed to convert image {i+1} to base64: {str(e)}") |
|
continue |
|
return base64_images |
|
|
|
def restore_images_from_base64_list(base64_images: List[str]) -> List[Image.Image]: |
|
"""从base64字符串列表恢复图片对象""" |
|
images = [] |
|
for i, base64_str in enumerate(base64_images): |
|
try: |
|
image_data = base64.b64decode(base64_str) |
|
image = Image.open(io.BytesIO(image_data)) |
|
images.append(image) |
|
logger.info(f"Restored image {i+1}/{len(base64_images)} from base64") |
|
except Exception as e: |
|
logger.error(f"Failed to restore image {i+1} from base64: {str(e)}") |
|
continue |
|
return images |
|
|
|
class DeltaObject: |
|
"""模拟OpenAI Delta对象""" |
|
def __init__(self, data: dict): |
|
self.content = data.get('content') |
|
self.role = data.get('role') |
|
|
|
class ChoiceObject: |
|
"""模拟OpenAI Choice对象""" |
|
def __init__(self, choice_data: dict): |
|
delta_data = choice_data.get('delta', {}) |
|
self.delta = DeltaObject(delta_data) |
|
self.finish_reason = choice_data.get('finish_reason') |
|
self.index = choice_data.get('index', 0) |
|
|
|
class ChunkObject: |
|
"""模拟OpenAI Chunk对象""" |
|
def __init__(self, chunk_data: dict): |
|
choices_data = chunk_data.get('choices', []) |
|
self.choices = [ChoiceObject(choice) for choice in choices_data] |
|
self.id = chunk_data.get('id', '') |
|
self.object = chunk_data.get('object', 'chat.completion.chunk') |
|
self.created = chunk_data.get('created', 0) |
|
self.model = chunk_data.get('model', '') |
|
|
|
class ProxyClient: |
|
"""代理客户端,用于与中间服务通信,支持负载均衡""" |
|
|
|
def __init__(self, timeout: int = 30): |
|
self.timeout = timeout |
|
self.session = requests.Session() |
|
|
|
def chat_completions_create(self, model: str, messages: list, stream: bool = True, **kwargs): |
|
"""创建聊天完成请求 - 使用负载均衡选择代理""" |
|
base_url = get_next_proxy_url().rstrip('/') |
|
|
|
if base_url.endswith('/v1'): |
|
url = f"{base_url}/chat/completions" |
|
else: |
|
url = f"{base_url}/v1/chat/completions" |
|
|
|
payload = { |
|
"model": model, |
|
"messages": messages, |
|
"stream": stream, |
|
**kwargs |
|
} |
|
|
|
try: |
|
response = self.session.post( |
|
url, |
|
json=payload, |
|
stream=stream, |
|
timeout=self.timeout, |
|
headers={"Content-Type": "application/json"} |
|
) |
|
response.raise_for_status() |
|
|
|
if stream: |
|
return self._parse_stream_response(response) |
|
else: |
|
return response.json() |
|
|
|
except requests.exceptions.RequestException as e: |
|
logger.error(f"Request failed: {str(e)}") |
|
raise Exception(f"Failed to connect to proxy server: {str(e)}") |
|
|
|
def _parse_stream_response(self, response) -> Generator[ChunkObject, None, None]: |
|
"""解析流式响应""" |
|
try: |
|
|
|
response.encoding = 'utf-8' |
|
|
|
for line in response.iter_lines(decode_unicode=True): |
|
if not line: |
|
continue |
|
|
|
line = line.strip() |
|
if line.startswith('data: '): |
|
data = line[6:] |
|
|
|
if data == '[DONE]': |
|
break |
|
|
|
try: |
|
chunk_data = json.loads(data) |
|
|
|
|
|
if 'error' in chunk_data: |
|
raise Exception(f"Stream error: {chunk_data.get('detail', chunk_data['error'])}") |
|
|
|
|
|
yield ChunkObject(chunk_data) |
|
|
|
except json.JSONDecodeError as e: |
|
logger.warning(f"Failed to parse JSON: {data}, error: {str(e)}") |
|
continue |
|
|
|
except Exception as e: |
|
logger.error(f"Error parsing stream response: {str(e)}") |
|
raise |
|
|
|
def health_check(self, specific_url: str = None) -> dict: |
|
"""健康检查 - 可以检查特定URL或使用负载均衡选择""" |
|
if specific_url: |
|
base_url = specific_url.rstrip('/') |
|
else: |
|
base_url = get_next_proxy_url().rstrip('/') |
|
|
|
try: |
|
url = f"{base_url}/health" |
|
response = self.session.get(url, timeout=self.timeout) |
|
response.raise_for_status() |
|
|
|
if response.text.strip(): |
|
result = response.json() |
|
else: |
|
|
|
logger.info(f"Health check for {base_url} returned empty response with 200 status, assuming healthy") |
|
result = {"status": "healthy"} |
|
|
|
result["proxy_url"] = base_url |
|
return result |
|
except Exception as e: |
|
logger.error(f"Health check failed for {base_url}: {str(e)}") |
|
return {"status": "unhealthy", "error": str(e), "proxy_url": base_url} |
|
|
|
def health_check_all(self) -> dict: |
|
"""检查所有代理服务器的健康状态""" |
|
results = {} |
|
all_urls = get_all_proxy_urls() |
|
|
|
for i, url in enumerate(all_urls): |
|
results[f"proxy_{i}"] = self.health_check(specific_url=url) |
|
|
|
|
|
healthy_count = sum(1 for result in results.values() if result.get("status") == "healthy") |
|
total_count = len(results) |
|
|
|
return { |
|
"overall_status": "healthy" if healthy_count > 0 else "unhealthy", |
|
"healthy_proxies": healthy_count, |
|
"total_proxies": total_count, |
|
"proxy_details": results |
|
} |
|
|
|
|
|
client = ProxyClient(PROXY_TIMEOUT) |
|
|
|
|
|
logger.info("=== 代理服务器配置 ===") |
|
logger.info(f"配置的代理服务器数量: {len(PROXY_BASE_URLS)}") |
|
for i, url in enumerate(PROXY_BASE_URLS): |
|
logger.info(f"代理 {i+1}: {url}") |
|
logger.info(f"代理超时时间: {PROXY_TIMEOUT}秒") |
|
logger.info(f"最大重试次数: {MAX_RETRIES}") |
|
if len(PROXY_BASE_URLS) > 1: |
|
logger.info("负载均衡模式: 轮询 (Round-robin)") |
|
logger.info("========================") |
|
|
|
def chat_with_retry(history_messages, max_retries=MAX_RETRIES): |
|
"""带重试机制的聊天函数,支持代理故障转移""" |
|
last_exception = None |
|
failed_proxies = set() |
|
|
|
|
|
total_proxies = len(PROXY_BASE_URLS) |
|
max_proxy_attempts = min(total_proxies, max_retries) |
|
|
|
for attempt in range(max_retries): |
|
try: |
|
logger.info(f"Chat attempt {attempt + 1}/{max_retries}") |
|
|
|
|
|
if attempt < max_proxy_attempts and total_proxies > 1: |
|
|
|
current_proxy_to_check = PROXY_BASE_URLS[current_proxy_index % total_proxies] |
|
if current_proxy_to_check not in failed_proxies: |
|
health = client.health_check(specific_url=current_proxy_to_check) |
|
if health.get("status") != "healthy": |
|
logger.warning(f"Proxy {current_proxy_to_check} is unhealthy, marking as failed") |
|
failed_proxies.add(current_proxy_to_check) |
|
|
|
continue |
|
|
|
response = client.chat_completions_create( |
|
model=model, |
|
messages=history_messages, |
|
stream=True, |
|
temperature=0.7, |
|
top_p=0.9, |
|
max_tokens=50000 |
|
) |
|
|
|
return response |
|
|
|
except Exception as e: |
|
last_exception = e |
|
current_failed_proxy = None |
|
|
|
|
|
try: |
|
current_failed_proxy = PROXY_BASE_URLS[(current_proxy_index - 1) % total_proxies] |
|
failed_proxies.add(current_failed_proxy) |
|
logger.warning(f"Attempt {attempt + 1} failed with proxy {current_failed_proxy}: {str(e)}") |
|
except: |
|
logger.warning(f"Attempt {attempt + 1} failed: {str(e)}") |
|
|
|
if attempt < max_retries - 1: |
|
|
|
if len(failed_proxies) < total_proxies and attempt < max_proxy_attempts: |
|
logger.info(f"Trying next proxy immediately...") |
|
continue |
|
else: |
|
|
|
wait_time = min(2 ** (attempt - max_proxy_attempts + 1), 4) if attempt >= max_proxy_attempts else 1 |
|
logger.info(f"Retrying in {wait_time} seconds...") |
|
time.sleep(wait_time) |
|
else: |
|
logger.error(f"All {max_retries} attempts failed across {len(failed_proxies)}/{total_proxies} proxies") |
|
|
|
raise last_exception |
|
|
|
|
|
is_modelscope_studio = os.getenv('MODELSCOPE_ENVIRONMENT') == 'studio' |
|
def get_text(text: str, cn_text: str): |
|
if is_modelscope_studio: |
|
return cn_text |
|
return text |
|
|
|
logo_img = os.path.join(os.path.dirname(__file__), "rednote_hilab.png") |
|
|
|
|
|
|
|
DEFAULT_CONVERSATIONS_HISTORY = [{"role": "placeholder"}] |
|
|
|
DEFAULT_LOCALE = 'zh_CN' if is_modelscope_studio else 'en_US' |
|
|
|
DEFAULT_THEME = { |
|
"token": { |
|
"colorPrimary": "#6A57FF", |
|
} |
|
} |
|
|
|
|
|
def format_history(history): |
|
messages = [{ |
|
"role": "system", |
|
"content": "", |
|
}] |
|
for item in history: |
|
if item["role"] == "user": |
|
|
|
content = item["content"] |
|
if isinstance(content, dict): |
|
if "multimodal" in content: |
|
|
|
messages.append({ |
|
"role": "user", |
|
"content": content["multimodal"] |
|
}) |
|
logger.info(f"Added multimodal message with {content.get('images_count', 0)} images to context") |
|
elif "images_base64" in content: |
|
|
|
text = content.get("text", "") |
|
images_base64 = content.get("images_base64", []) |
|
|
|
if images_base64: |
|
|
|
restored_images = restore_images_from_base64_list(images_base64) |
|
multimodal_content = create_multimodal_content(text, restored_images) |
|
messages.append({ |
|
"role": "user", |
|
"content": multimodal_content |
|
}) |
|
logger.info(f"Restored and added multimodal message with {len(restored_images)} images to context") |
|
else: |
|
|
|
messages.append({"role": "user", "content": text}) |
|
else: |
|
|
|
text_content = content.get("text", str(content)) |
|
messages.append({"role": "user", "content": text_content}) |
|
else: |
|
|
|
messages.append({"role": "user", "content": content}) |
|
elif item["role"] == "assistant": |
|
|
|
assistant_content = item["content"] or "" |
|
|
|
|
|
thinking_content = item.get("meta", {}).get("thinking_content", "") |
|
if thinking_content: |
|
|
|
|
|
full_content = f"<think>{thinking_content}</think>{assistant_content}" |
|
else: |
|
full_content = assistant_content |
|
|
|
messages.append({"role": "assistant", "content": full_content}) |
|
return messages |
|
|
|
|
|
class Gradio_Events: |
|
|
|
@staticmethod |
|
def _submit(state_value): |
|
history = state_value["conversations_history"][ |
|
state_value["conversation_id"]] |
|
|
|
history_messages = format_history(history) |
|
|
|
history.append({ |
|
"role": "assistant", |
|
"content": "", |
|
"key": str(uuid.uuid4()), |
|
"meta": { |
|
"reason_content": "", |
|
"thinking_content": "", |
|
"is_thinking": False, |
|
"thinking_done": False |
|
}, |
|
"loading": True, |
|
}) |
|
|
|
yield { |
|
chatbot: gr.update(items=history), |
|
state: gr.update(value=state_value), |
|
} |
|
try: |
|
response = chat_with_retry(history_messages) |
|
|
|
thought_done = False |
|
in_thinking = False |
|
accumulated_content = "" |
|
|
|
|
|
buffer_content = "" |
|
last_yield_time = time.time() |
|
chunk_count = 0 |
|
state_update_count = 0 |
|
BUFFER_INTERVAL = 0.5 |
|
BUFFER_CHUNKS = 5 |
|
STATE_UPDATE_INTERVAL = 3 |
|
|
|
|
|
|
|
for chunk in response: |
|
|
|
if chunk.choices and len(chunk.choices) > 0: |
|
content = chunk.choices[0].delta.content |
|
else: |
|
content = None |
|
raise ValueError('Content is None') |
|
|
|
history[-1]["loading"] = False |
|
print(content, end='') |
|
if content: |
|
accumulated_content += content |
|
buffer_content += content |
|
chunk_count += 1 |
|
|
|
|
|
if "<think>" in accumulated_content and not in_thinking: |
|
in_thinking = True |
|
history[-1]["meta"]["is_thinking"] = True |
|
|
|
before_think = accumulated_content.split("<think>")[0] |
|
if before_think.strip(): |
|
|
|
history[-1]["content"] = before_think |
|
|
|
think_parts = accumulated_content.split("<think>", 1) |
|
if len(think_parts) > 1: |
|
accumulated_content = think_parts[1] |
|
else: |
|
accumulated_content = "" |
|
|
|
yield { |
|
chatbot: gr.update(items=history), |
|
state: gr.update(value=state_value) |
|
} |
|
buffer_content = "" |
|
last_yield_time = time.time() |
|
chunk_count = 0 |
|
continue |
|
|
|
|
|
if "</think>" in accumulated_content and in_thinking: |
|
in_thinking = False |
|
history[-1]["meta"]["is_thinking"] = False |
|
history[-1]["meta"]["thinking_done"] = True |
|
history[-1]["meta"]["just_finished_thinking"] = True |
|
|
|
|
|
think_parts = accumulated_content.split("</think>", 1) |
|
thinking_content = think_parts[0] |
|
history[-1]["meta"]["thinking_content"] = thinking_content |
|
|
|
|
|
if len(think_parts) > 1: |
|
after_think_content = think_parts[1] |
|
if after_think_content.strip(): |
|
|
|
current_content = history[-1]["content"] or "" |
|
history[-1]["content"] = current_content + after_think_content |
|
|
|
accumulated_content = "" |
|
|
|
yield { |
|
chatbot: gr.update(items=history), |
|
state: gr.update(value=state_value) |
|
} |
|
buffer_content = "" |
|
last_yield_time = time.time() |
|
chunk_count = 0 |
|
continue |
|
|
|
|
|
current_time = time.time() |
|
should_yield = False |
|
|
|
if (current_time - last_yield_time >= BUFFER_INTERVAL) or (chunk_count >= BUFFER_CHUNKS): |
|
should_yield = True |
|
|
|
|
|
if in_thinking: |
|
|
|
if "</think>" not in accumulated_content: |
|
history[-1]["meta"]["thinking_content"] = accumulated_content |
|
if should_yield: |
|
state_update_count += 1 |
|
|
|
should_update_state = (state_update_count % STATE_UPDATE_INTERVAL == 0) |
|
|
|
yield { |
|
chatbot: gr.update(items=history), |
|
state: gr.update(value=state_value) if should_update_state else gr.skip() |
|
} |
|
buffer_content = "" |
|
last_yield_time = current_time |
|
chunk_count = 0 |
|
else: |
|
|
|
if not thought_done: |
|
thought_done = True |
|
if not history[-1]["content"]: |
|
history[-1]["content"] = "" |
|
|
|
|
|
if should_yield: |
|
|
|
history[-1]["content"] += buffer_content |
|
|
|
|
|
if history[-1]["meta"].get("just_finished_thinking"): |
|
history[-1]["meta"]["just_finished_thinking"] = False |
|
|
|
state_update_count += 1 |
|
|
|
should_update_state = (state_update_count % STATE_UPDATE_INTERVAL == 0) |
|
|
|
yield { |
|
chatbot: gr.update(items=history), |
|
state: gr.update(value=state_value) if should_update_state else gr.skip() |
|
} |
|
|
|
|
|
buffer_content = "" |
|
last_yield_time = current_time |
|
chunk_count = 0 |
|
else: |
|
|
|
|
|
pass |
|
|
|
|
|
if buffer_content: |
|
if in_thinking: |
|
|
|
history[-1]["meta"]["thinking_content"] = accumulated_content |
|
else: |
|
|
|
if not history[-1]["content"]: |
|
history[-1]["content"] = "" |
|
history[-1]["content"] += buffer_content |
|
|
|
|
|
if history[-1]["meta"].get("just_finished_thinking"): |
|
history[-1]["meta"]["just_finished_thinking"] = False |
|
|
|
|
|
yield { |
|
chatbot: gr.update(items=history), |
|
state: gr.update(value=state_value) |
|
} |
|
|
|
history[-1]["meta"]["end"] = True |
|
print("Answer: ", history[-1]["content"]) |
|
|
|
|
|
if save_conversation: |
|
|
|
user_message = None |
|
for i in range(len(history) - 2, -1, -1): |
|
if history[i]["role"] == "user": |
|
user_message = history[i] |
|
break |
|
|
|
if user_message: |
|
save_conversation_log( |
|
history_messages=history_messages, |
|
assistant_content=history[-1]["content"], |
|
metadata={ |
|
"model": model, |
|
"proxy_base_urls": PROXY_BASE_URLS, |
|
"conversation_id": state_value["conversation_id"], |
|
"thinking_content": history[-1]["meta"].get("thinking_content", ""), |
|
"has_thinking": bool(history[-1]["meta"].get("thinking_content")) |
|
} |
|
) |
|
|
|
except Exception as e: |
|
history[-1]["loading"] = False |
|
history[-1]["meta"]["end"] = True |
|
history[-1]["meta"]["error"] = True |
|
history[-1]["content"] = "Failed to respond, please try again." |
|
yield { |
|
chatbot: gr.update(items=history), |
|
state: gr.update(value=state_value) |
|
} |
|
print('Error: ',e) |
|
raise e |
|
|
|
|
|
@staticmethod |
|
def submit(sender_value, state_value): |
|
if not state_value["conversation_id"]: |
|
random_id = str(uuid.uuid4()) |
|
history = [] |
|
state_value["conversation_id"] = random_id |
|
state_value["conversations_history"][random_id] = history |
|
|
|
label = sender_value if isinstance(sender_value, str) else "New Chat" |
|
state_value["conversations"].append({ |
|
"label": label, |
|
"key": random_id |
|
}) |
|
|
|
history = state_value["conversations_history"][ |
|
state_value["conversation_id"]] |
|
|
|
|
|
uploaded_images = state_value.get("uploaded_images", []) |
|
|
|
if uploaded_images: |
|
|
|
multimodal_content = create_multimodal_content(sender_value, uploaded_images) |
|
|
|
images_base64 = convert_images_to_base64_list(uploaded_images) |
|
|
|
message_content = { |
|
"text": sender_value, |
|
"images_count": len(uploaded_images), |
|
"images_base64": images_base64, |
|
"multimodal": multimodal_content |
|
} |
|
|
|
logger.info(f"Saving message with {len(uploaded_images)} images to history") |
|
|
|
state_value["uploaded_images"] = [] |
|
state_value["image_file_paths"] = [] |
|
else: |
|
|
|
message_content = sender_value |
|
|
|
history.append({ |
|
"role": "user", |
|
"meta": {}, |
|
"key": str(uuid.uuid4()), |
|
"content": message_content |
|
}) |
|
|
|
|
|
yield Gradio_Events.preprocess_submit()(state_value) |
|
try: |
|
for chunk in Gradio_Events._submit(state_value): |
|
yield chunk |
|
except Exception as e: |
|
raise e |
|
finally: |
|
|
|
yield Gradio_Events.postprocess_submit(state_value) |
|
|
|
@staticmethod |
|
def regenerate_message(state_value, e: gr.EventData): |
|
conversation_key = e._data["component"]["conversationKey"] |
|
history = state_value["conversations_history"][ |
|
state_value["conversation_id"]] |
|
index = -1 |
|
for i, conversation in enumerate(history): |
|
if conversation["key"] == conversation_key: |
|
index = i |
|
break |
|
if index == -1: |
|
yield gr.skip() |
|
history = history[:index] |
|
state_value["conversations_history"][ |
|
state_value["conversation_id"]] = history |
|
|
|
yield { |
|
chatbot:gr.update(items=history), |
|
state: gr.update(value=state_value) |
|
} |
|
|
|
|
|
yield Gradio_Events.preprocess_submit(clear_input=False)(state_value) |
|
try: |
|
for chunk in Gradio_Events._submit(state_value): |
|
yield chunk |
|
except Exception as e: |
|
raise e |
|
finally: |
|
|
|
yield Gradio_Events.postprocess_submit(state_value) |
|
|
|
|
|
@staticmethod |
|
def preprocess_submit(clear_input=True): |
|
|
|
def preprocess_submit_handler(state_value): |
|
history = state_value["conversations_history"][ |
|
state_value["conversation_id"]] |
|
for conversation in history: |
|
if "meta" in conversation: |
|
conversation["meta"]["disabled"] = True |
|
return { |
|
sender: gr.update(value=None, loading=True) if clear_input else gr.update(loading=True), |
|
conversations: |
|
gr.update(active_key=state_value["conversation_id"], |
|
items=list( |
|
map( |
|
lambda item: { |
|
**item, |
|
"disabled": |
|
True if item["key"] != state_value[ |
|
"conversation_id"] else False, |
|
}, state_value["conversations"]))), |
|
add_conversation_btn: |
|
gr.update(disabled=True), |
|
clear_btn: |
|
gr.update(disabled=True), |
|
conversation_delete_menu_item: |
|
gr.update(disabled=True), |
|
chatbot: |
|
gr.update(items=history), |
|
state: |
|
gr.update(value=state_value), |
|
image_upload: gr.update(value=None), |
|
green_image_indicator: gr.update(count=0, elem_style=dict(display="block")), |
|
trash_button: gr.update(elem_style=dict(display="none")), |
|
stop_btn: gr.update(visible=True) |
|
} |
|
|
|
return preprocess_submit_handler |
|
|
|
@staticmethod |
|
def postprocess_submit(state_value): |
|
history = state_value["conversations_history"][ |
|
state_value["conversation_id"]] |
|
for conversation in history: |
|
if "meta" in conversation: |
|
conversation["meta"]["disabled"] = False |
|
return { |
|
sender: gr.update(loading=False), |
|
conversation_delete_menu_item: gr.update(disabled=False), |
|
clear_btn: gr.update(disabled=False), |
|
conversations: gr.update(items=state_value["conversations"]), |
|
add_conversation_btn: gr.update(disabled=False), |
|
chatbot: gr.update(items=history), |
|
state: gr.update(value=state_value), |
|
stop_btn: gr.update(visible=False) |
|
} |
|
|
|
@staticmethod |
|
def cancel(state_value): |
|
history = state_value["conversations_history"][ |
|
state_value["conversation_id"]] |
|
history[-1]["loading"] = False |
|
history[-1]["meta"]["end"] = True |
|
history[-1]["meta"]["canceled"] = True |
|
return Gradio_Events.postprocess_submit(state_value) |
|
|
|
@staticmethod |
|
def delete_message(state_value, e: gr.EventData): |
|
conversation_key = e._data["component"]["conversationKey"] |
|
history = state_value["conversations_history"][ |
|
state_value["conversation_id"]] |
|
history = [item for item in history if item["key"] != conversation_key] |
|
state_value["conversations_history"][ |
|
state_value["conversation_id"]] = history |
|
|
|
return gr.update(items=history if len(history) > |
|
0 else DEFAULT_CONVERSATIONS_HISTORY), gr.update( |
|
value=state_value) |
|
|
|
|
|
|
|
@staticmethod |
|
def edit_message(state_value, e: gr.EventData): |
|
conversation_key = e._data["component"]["conversationKey"] |
|
history = state_value["conversations_history"][ |
|
state_value["conversation_id"]] |
|
index = -1 |
|
for i, conversation in enumerate(history): |
|
if conversation["key"] == conversation_key: |
|
index = i |
|
break |
|
if index == -1: |
|
return gr.skip() |
|
state_value["editing_message_index"] = index |
|
text = '' |
|
if isinstance(history[index]["content"], str): |
|
text = history[index]["content"] |
|
else: |
|
text = history[index]["content"]["text"] |
|
return gr.update(value=text), gr.update(value=state_value) |
|
|
|
@staticmethod |
|
def confirm_edit_message(edit_textarea_value, state_value): |
|
history = state_value["conversations_history"][ |
|
state_value["conversation_id"]] |
|
message = history[state_value["editing_message_index"]] |
|
if isinstance(message["content"], str): |
|
message["content"] = edit_textarea_value |
|
else: |
|
message["content"]["text"] = edit_textarea_value |
|
return gr.update(items=history), gr.update(value=state_value) |
|
|
|
@staticmethod |
|
def select_suggestion(sender_value, e: gr.EventData): |
|
return gr.update(value=sender_value[:-1] + e._data["payload"][0]) |
|
|
|
@staticmethod |
|
def new_chat(state_value): |
|
if not state_value["conversation_id"]: |
|
return gr.skip() |
|
state_value["conversation_id"] = "" |
|
|
|
state_value["uploaded_images"] = [] |
|
state_value["image_file_paths"] = [] |
|
return gr.update(active_key=state_value["conversation_id"]), gr.update( |
|
items=DEFAULT_CONVERSATIONS_HISTORY), gr.update(value=state_value) |
|
|
|
@staticmethod |
|
def select_conversation(state_value, e: gr.EventData): |
|
active_key = e._data["payload"][0] |
|
if state_value["conversation_id"] == active_key or ( |
|
active_key not in state_value["conversations_history"]): |
|
return gr.skip() |
|
state_value["conversation_id"] = active_key |
|
|
|
state_value["uploaded_images"] = [] |
|
state_value["image_file_paths"] = [] |
|
return gr.update(active_key=active_key), gr.update( |
|
items=state_value["conversations_history"][active_key]), gr.update( |
|
value=state_value) |
|
|
|
@staticmethod |
|
def click_conversation_menu(state_value, e: gr.EventData): |
|
conversation_id = e._data["payload"][0]["key"] |
|
operation = e._data["payload"][1]["key"] |
|
if operation == "delete": |
|
del state_value["conversations_history"][conversation_id] |
|
|
|
state_value["conversations"] = [ |
|
item for item in state_value["conversations"] |
|
if item["key"] != conversation_id |
|
] |
|
|
|
if state_value["conversation_id"] == conversation_id: |
|
state_value["conversation_id"] = "" |
|
|
|
state_value["uploaded_images"] = [] |
|
state_value["image_file_paths"] = [] |
|
return gr.update( |
|
items=state_value["conversations"], |
|
active_key=state_value["conversation_id"]), gr.update( |
|
items=DEFAULT_CONVERSATIONS_HISTORY), gr.update( |
|
value=state_value) |
|
else: |
|
return gr.update( |
|
items=state_value["conversations"]), gr.skip(), gr.update( |
|
value=state_value) |
|
return gr.skip() |
|
|
|
@staticmethod |
|
def clear_conversation_history(state_value): |
|
if not state_value["conversation_id"]: |
|
return gr.skip() |
|
state_value["conversations_history"][ |
|
state_value["conversation_id"]] = [] |
|
|
|
state_value["uploaded_images"] = [] |
|
state_value["image_file_paths"] = [] |
|
return gr.update(items=DEFAULT_CONVERSATIONS_HISTORY), gr.update( |
|
value=state_value) |
|
|
|
@staticmethod |
|
def close_modal(): |
|
return gr.update(open=False) |
|
|
|
@staticmethod |
|
def open_modal(): |
|
return gr.update(open=True) |
|
|
|
@staticmethod |
|
def update_browser_state(state_value): |
|
|
|
return gr.update(value=dict( |
|
conversations=state_value["conversations"], |
|
conversations_history=state_value["conversations_history"])) |
|
|
|
@staticmethod |
|
def apply_browser_state(browser_state_value, state_value): |
|
state_value["conversations"] = browser_state_value["conversations"] |
|
state_value["conversations_history"] = browser_state_value[ |
|
"conversations_history"] |
|
return gr.update( |
|
items=browser_state_value["conversations"]), gr.update( |
|
value=state_value) |
|
|
|
@staticmethod |
|
def handle_image_upload(files, state_value): |
|
"""处理图片上传 - 支持拖拽和粘贴功能""" |
|
logger.info(f"handle_image_upload called with files: {files}, type: {type(files)}") |
|
|
|
if not files: |
|
|
|
logger.info("No files provided, resetting to default state") |
|
return ( |
|
gr.update(value=state_value), |
|
gr.update(count=0, elem_style=dict(display="block")), |
|
gr.update(elem_style=dict(display="none")), |
|
) |
|
|
|
|
|
logger.info("Upload in progress...") |
|
|
|
try: |
|
|
|
uploaded_images = [] |
|
image_file_paths = [] |
|
|
|
|
|
if not isinstance(files, list): |
|
files = [files] if files else [] |
|
|
|
for i, file_info in enumerate(files): |
|
logger.info(f"Processing file {i}: {file_info}, type: {type(file_info)}") |
|
|
|
file_path = None |
|
|
|
if isinstance(file_info, dict): |
|
|
|
file_path = file_info.get('name') or file_info.get('path') |
|
logger.info(f"Extracted path from dict: {file_path}") |
|
elif isinstance(file_info, str): |
|
|
|
file_path = file_info |
|
logger.info(f"Direct file path: {file_path}") |
|
elif hasattr(file_info, 'name') and hasattr(file_info, 'read'): |
|
|
|
logger.info(f"File object detected: {file_info.name if hasattr(file_info, 'name') else 'unnamed'}") |
|
|
|
try: |
|
if hasattr(file_info, 'name'): |
|
file_path = file_info.name |
|
else: |
|
|
|
import tempfile |
|
with tempfile.NamedTemporaryFile(suffix='.png', delete=False) as tmp_file: |
|
if hasattr(file_info, 'read'): |
|
tmp_file.write(file_info.read()) |
|
file_path = tmp_file.name |
|
logger.info(f"Created temporary file: {file_path}") |
|
except Exception as file_error: |
|
logger.error(f"Error processing file object: {str(file_error)}") |
|
continue |
|
else: |
|
logger.warning(f"Unknown file format: {type(file_info)}") |
|
continue |
|
|
|
if file_path: |
|
try: |
|
|
|
image_file_paths.append(file_path) |
|
logger.info(f"Added to image_file_paths: {file_path}") |
|
|
|
|
|
image = Image.open(file_path) |
|
logger.info(f"Loaded image with size: {image.size} (原始尺寸,不进行缩放)") |
|
|
|
|
|
uploaded_images.append(image) |
|
|
|
except Exception as img_error: |
|
logger.error(f"Error processing image {file_path}: {str(img_error)}") |
|
continue |
|
|
|
|
|
state_value["uploaded_images"] = uploaded_images |
|
state_value["image_file_paths"] = image_file_paths |
|
|
|
logger.info(f"Successfully uploaded {len(uploaded_images)} images via drag/paste/upload") |
|
|
|
|
|
return ( |
|
gr.update(value=state_value), |
|
gr.update(count=len(uploaded_images), elem_style=dict(display="block")), |
|
gr.update(elem_style=dict(display="block")), |
|
) |
|
|
|
except Exception as e: |
|
logger.error(f"Error handling image upload: {str(e)}") |
|
import traceback |
|
logger.error(f"Full traceback: {traceback.format_exc()}") |
|
return ( |
|
gr.update(value=state_value), |
|
gr.update(count=0, elem_style=dict(display="block")), |
|
gr.update(elem_style=dict(display="none")), |
|
) |
|
|
|
|
|
|
|
@staticmethod |
|
def clear_images(state_value): |
|
"""清空上传的图片""" |
|
state_value["uploaded_images"] = [] |
|
state_value["image_file_paths"] = [] |
|
logger.info("Cleared all uploaded images") |
|
return ( |
|
gr.update(value=state_value), |
|
gr.update(count=0, elem_style=dict(display="block")), |
|
gr.update(elem_style=dict(display="none")), |
|
gr.update(value=None), |
|
) |
|
|
|
|
|
css = """ |
|
.gradio-container { |
|
padding: 0 !important; |
|
} |
|
.gradio-container > main.fillable { |
|
padding: 0 !important; |
|
} |
|
#chatbot { |
|
height: calc(100vh - 21px - 16px); |
|
} |
|
#chatbot .chatbot-conversations { |
|
height: 100%; |
|
background-color: var(--ms-gr-ant-color-bg-layout); |
|
} |
|
#chatbot .chatbot-conversations .chatbot-conversations-list { |
|
padding-left: 0; |
|
padding-right: 0; |
|
} |
|
#chatbot .chatbot-chat { |
|
padding: 32px; |
|
height: 100%; |
|
} |
|
@media (max-width: 768px) { |
|
#chatbot .chatbot-chat { |
|
padding: 0; |
|
} |
|
} |
|
#chatbot .chatbot-chat .chatbot-chat-messages { |
|
flex: 1; |
|
} |
|
#chatbot .chatbot-chat .chatbot-chat-messages .chatbot-chat-message .chatbot-chat-message-footer { |
|
visibility: hidden; |
|
opacity: 0; |
|
transition: opacity 0.2s; |
|
} |
|
#chatbot .chatbot-chat .chatbot-chat-message:last-child .chatbot-chat-message-footer { |
|
visibility: visible; |
|
opacity: 1; |
|
} |
|
#chatbot .chatbot-chat .chatbot-chat-message:hover .chatbot-chat-message-footer { |
|
visibility: visible; |
|
opacity: 1; |
|
} |
|
/* Thinking区域样式 */ |
|
.thinking-content .ant-collapse { |
|
background: linear-gradient(135deg, #f8f9fc 0%, #f2f5f8 100%); |
|
border: 1px solid #e1e8ed; |
|
border-radius: 8px; |
|
margin-bottom: 12px; |
|
} |
|
.thinking-content .ant-collapse > .ant-collapse-item > .ant-collapse-header { |
|
padding: 8px 12px; |
|
font-size: 13px; |
|
color: #5a6c7d; |
|
font-weight: 500; |
|
} |
|
.thinking-content .ant-collapse-content > .ant-collapse-content-box { |
|
padding: 12px; |
|
background: #fafbfc; |
|
border-radius: 0 0 6px 6px; |
|
font-size: 13px; |
|
color: #667788; |
|
line-height: 1.5; |
|
white-space: pre-wrap; |
|
font-family: 'SF Mono', 'Monaco', 'Inconsolata', 'Roboto Mono', monospace; |
|
} |
|
.thinking-content .ant-collapse-content-box .markdown-body { |
|
font-size: 13px; |
|
line-height: 1.5; |
|
color: #667788; |
|
} |
|
.thinking-content .ant-collapse-content-box pre { |
|
background: #f6f8fa; |
|
padding: 8px; |
|
border-radius: 4px; |
|
overflow: auto; |
|
} |
|
.thinking-content .ant-collapse-content-box h1, |
|
.thinking-content .ant-collapse-content-box h2, |
|
.thinking-content .ant-collapse-content-box h3, |
|
.thinking-content .ant-collapse-content-box h4, |
|
.thinking-content .ant-collapse-content-box h5, |
|
.thinking-content .ant-collapse-content-box h6 { |
|
margin-top: 16px; |
|
margin-bottom: 8px; |
|
font-weight: 600; |
|
} |
|
.thinking-content .ant-collapse-content-box ul, |
|
.thinking-content .ant-collapse-content-box ol { |
|
margin: 8px 0; |
|
padding-left: 20px; |
|
} |
|
.thinking-content .ant-collapse-content-box li { |
|
margin: 4px 0; |
|
} |
|
.thinking-content .ant-collapse-content-box code { |
|
background: #f1f3f4; |
|
padding: 2px 4px; |
|
border-radius: 3px; |
|
font-size: 85%; |
|
} |
|
|
|
/* 图片预览和展示样式 */ |
|
.image-preview-container { |
|
background: #fafafa; |
|
border: 1px solid #d9d9d9; |
|
border-radius: 8px; |
|
padding: 12px; |
|
margin-bottom: 12px; |
|
} |
|
|
|
.image-gallery img { |
|
transition: all 0.2s ease; |
|
border-radius: 4px; |
|
} |
|
|
|
.image-gallery img:hover { |
|
transform: scale(1.05); |
|
box-shadow: 0 4px 12px rgba(0, 0, 0, 0.15); |
|
z-index: 10; |
|
position: relative; |
|
} |
|
|
|
.image-thumbnail { |
|
position: relative; |
|
display: inline-block; |
|
margin: 4px; |
|
border-radius: 6px; |
|
overflow: hidden; |
|
box-shadow: 0 2px 8px rgba(0, 0, 0, 0.1); |
|
transition: all 0.2s ease; |
|
} |
|
|
|
.image-thumbnail:hover { |
|
box-shadow: 0 4px 16px rgba(0, 0, 0, 0.2); |
|
transform: translateY(-2px); |
|
} |
|
|
|
.image-upload-preview { |
|
background: linear-gradient(135deg, #f5f7fa 0%, #c3cfe2 100%); |
|
border: 2px dashed #d9d9d9; |
|
border-radius: 8px; |
|
padding: 16px; |
|
margin-bottom: 16px; |
|
text-align: center; |
|
transition: all 0.3s ease; |
|
} |
|
|
|
.image-upload-preview.has-images { |
|
border-style: solid; |
|
border-color: #6A57FF; |
|
background: linear-gradient(135deg, #f6f9fc 0%, #f0f4f8 100%); |
|
} |
|
|
|
/* 拖拽区域样式 */ |
|
.drop-zone { |
|
position: relative; |
|
transition: all 0.3s ease; |
|
} |
|
|
|
.drop-zone.drag-over { |
|
background: linear-gradient(135deg, #e6f7ff 0%, #d6f7ff 100%); |
|
border: 2px dashed #1890ff; |
|
border-radius: 8px; |
|
} |
|
|
|
.drop-zone.drag-over::before { |
|
content: "释放以上传图片"; |
|
position: absolute; |
|
top: 50%; |
|
left: 50%; |
|
transform: translate(-50%, -50%); |
|
background: rgba(24, 144, 255, 0.9); |
|
color: white; |
|
padding: 12px 24px; |
|
border-radius: 6px; |
|
font-size: 16px; |
|
font-weight: 500; |
|
z-index: 1000; |
|
pointer-events: none; |
|
} |
|
|
|
/* 响应式图片展示 */ |
|
@media (max-width: 768px) { |
|
.image-gallery img { |
|
width: 80px !important; |
|
height: 60px !important; |
|
} |
|
|
|
.image-thumbnail { |
|
width: 80px; |
|
height: 60px; |
|
} |
|
} |
|
|
|
/* 图片加载动画 */ |
|
@keyframes imageLoad { |
|
from { opacity: 0; transform: scale(0.8); } |
|
to { opacity: 1; transform: scale(1); } |
|
} |
|
|
|
.image-gallery img { |
|
animation: imageLoad 0.3s ease; |
|
} |
|
|
|
/* 粘贴提示样式 */ |
|
.paste-hint { |
|
position: fixed; |
|
top: 20px; |
|
right: 20px; |
|
background: rgba(24, 144, 255, 0.9); |
|
color: white; |
|
padding: 8px 16px; |
|
border-radius: 6px; |
|
font-size: 14px; |
|
z-index: 1001; |
|
opacity: 0; |
|
transform: translateY(-10px); |
|
transition: all 0.3s ease; |
|
} |
|
|
|
.paste-hint.show { |
|
opacity: 1; |
|
transform: translateY(0); |
|
} |
|
""" |
|
|
|
|
|
drag_and_paste_js = """ |
|
<script> |
|
(function() { |
|
let isInitialized = false; |
|
|
|
function initializeDragAndPaste() { |
|
if (isInitialized) return; |
|
isInitialized = true; |
|
|
|
console.log('Initializing drag and paste functionality...'); |
|
|
|
// 创建粘贴提示元素 |
|
const pasteHint = document.createElement('div'); |
|
pasteHint.className = 'paste-hint'; |
|
pasteHint.textContent = '检测到剪贴板中的图片,按 Ctrl+V 粘贴'; |
|
document.body.appendChild(pasteHint); |
|
|
|
// 获取聊天容器作为拖拽区域 |
|
const chatContainer = document.querySelector('#chatbot .chatbot-chat') || document.body; |
|
|
|
// 防止默认的拖拽行为 |
|
['dragenter', 'dragover', 'dragleave', 'drop'].forEach(eventName => { |
|
chatContainer.addEventListener(eventName, preventDefaults, false); |
|
document.body.addEventListener(eventName, preventDefaults, false); |
|
}); |
|
|
|
function preventDefaults(e) { |
|
e.preventDefault(); |
|
e.stopPropagation(); |
|
} |
|
|
|
// 拖拽进入 |
|
['dragenter', 'dragover'].forEach(eventName => { |
|
chatContainer.addEventListener(eventName, highlight, false); |
|
}); |
|
|
|
// 拖拽离开 |
|
['dragleave', 'drop'].forEach(eventName => { |
|
chatContainer.addEventListener(eventName, unhighlight, false); |
|
}); |
|
|
|
function highlight(e) { |
|
if (e.dataTransfer.types.includes('Files')) { |
|
chatContainer.classList.add('drop-zone', 'drag-over'); |
|
} |
|
} |
|
|
|
function unhighlight(e) { |
|
chatContainer.classList.remove('drop-zone', 'drag-over'); |
|
} |
|
|
|
// 处理文件放置 |
|
chatContainer.addEventListener('drop', handleDrop, false); |
|
|
|
function handleDrop(e) { |
|
const dt = e.dataTransfer; |
|
const files = dt.files; |
|
|
|
if (files.length > 0) { |
|
handleFileUpload(Array.from(files)); |
|
} |
|
} |
|
|
|
// 处理粘贴事件 |
|
document.addEventListener('paste', handlePaste, false); |
|
|
|
function handlePaste(e) { |
|
const items = e.clipboardData.items; |
|
const imageFiles = []; |
|
|
|
for (let i = 0; i < items.length; i++) { |
|
if (items[i].type.indexOf('image') === 0) { |
|
const file = items[i].getAsFile(); |
|
if (file) { |
|
imageFiles.push(file); |
|
} |
|
} |
|
} |
|
|
|
if (imageFiles.length > 0) { |
|
e.preventDefault(); |
|
handleFileUpload(imageFiles); |
|
showPasteSuccess(); |
|
} |
|
} |
|
|
|
// 显示粘贴成功提示 |
|
function showPasteSuccess() { |
|
pasteHint.textContent = '图片粘贴成功!'; |
|
pasteHint.classList.add('show'); |
|
setTimeout(() => { |
|
pasteHint.classList.remove('show'); |
|
}, 2000); |
|
} |
|
|
|
// 处理文件上传 |
|
function handleFileUpload(files) { |
|
console.log('Processing files:', files); |
|
|
|
// 过滤只保留图片文件 |
|
const imageFiles = files.filter(file => file.type.startsWith('image/')); |
|
|
|
if (imageFiles.length === 0) { |
|
console.log('No image files found'); |
|
return; |
|
} |
|
|
|
// 查找上传组件 |
|
const uploadInput = document.querySelector('input[type="file"][accept*="image"]'); |
|
if (!uploadInput) { |
|
console.error('Upload input not found'); |
|
return; |
|
} |
|
|
|
try { |
|
// 创建新的文件列表 |
|
const dt = new DataTransfer(); |
|
imageFiles.forEach(file => { |
|
dt.items.add(file); |
|
}); |
|
|
|
// 设置文件到上传组件 |
|
uploadInput.files = dt.files; |
|
|
|
// 触发 change 事件 |
|
const changeEvent = new Event('change', { bubbles: true }); |
|
uploadInput.dispatchEvent(changeEvent); |
|
|
|
console.log(`Successfully uploaded ${imageFiles.length} image(s)`); |
|
|
|
// 显示成功提示 |
|
showUploadSuccess(imageFiles.length); |
|
|
|
} catch (error) { |
|
console.error('Error uploading files:', error); |
|
} |
|
} |
|
|
|
// 显示上传成功提示 |
|
function showUploadSuccess(count) { |
|
pasteHint.textContent = `成功上传 ${count} 张图片!`; |
|
pasteHint.classList.add('show'); |
|
setTimeout(() => { |
|
pasteHint.classList.remove('show'); |
|
}, 2000); |
|
} |
|
|
|
// 监听剪贴板变化(可选功能) |
|
document.addEventListener('keydown', function(e) { |
|
if (e.ctrlKey && e.key === 'v') { |
|
// 检查是否聚焦在输入框上 |
|
const activeElement = document.activeElement; |
|
const isInInputArea = activeElement && ( |
|
activeElement.tagName === 'TEXTAREA' || |
|
activeElement.tagName === 'INPUT' || |
|
activeElement.contentEditable === 'true' |
|
); |
|
|
|
if (isInInputArea) { |
|
// 短暂显示提示 |
|
setTimeout(() => { |
|
if (navigator.clipboard && navigator.clipboard.read) { |
|
navigator.clipboard.read().then(items => { |
|
const hasImage = items.some(item => |
|
item.types.some(type => type.startsWith('image/')) |
|
); |
|
if (hasImage) { |
|
pasteHint.textContent = '检测到图片,正在处理...'; |
|
pasteHint.classList.add('show'); |
|
setTimeout(() => { |
|
pasteHint.classList.remove('show'); |
|
}, 1500); |
|
} |
|
}).catch(() => { |
|
// 忽略权限错误 |
|
}); |
|
} |
|
}, 100); |
|
} |
|
} |
|
}); |
|
|
|
console.log('Drag and paste functionality initialized successfully'); |
|
} |
|
|
|
// 初始化函数 |
|
function init() { |
|
if (document.readyState === 'loading') { |
|
document.addEventListener('DOMContentLoaded', initializeDragAndPaste); |
|
} else { |
|
initializeDragAndPaste(); |
|
} |
|
} |
|
|
|
// 如果Gradio还没有完全加载,等待一下 |
|
if (window.gradio && window.gradio.mount) { |
|
init(); |
|
} else { |
|
// 等待Gradio加载 |
|
setTimeout(init, 1000); |
|
} |
|
|
|
// 也监听window load事件作为备选 |
|
window.addEventListener('load', initializeDragAndPaste); |
|
|
|
})(); |
|
</script> |
|
""" |
|
|
|
|
|
def logo(): |
|
with antd.Typography.Title(level=1, |
|
elem_style=dict(fontSize=24, |
|
padding=8, |
|
margin=0)): |
|
with antd.Flex(align="center", gap="small", justify="center"): |
|
antd.Image(logo_img, |
|
preview=False, |
|
alt="logo", |
|
width=24, |
|
height=24) |
|
ms.Span("dots.vlm1.inst") |
|
|
|
|
|
with gr.Blocks(css=css, fill_width=True, head=drag_and_paste_js) as demo: |
|
state = gr.State({ |
|
"conversations_history": {}, |
|
"conversations": [], |
|
"conversation_id": "", |
|
"editing_message_index": -1, |
|
"uploaded_images": [], |
|
"image_file_paths": [], |
|
}) |
|
|
|
with ms.Application(), antdx.XProvider( |
|
theme=DEFAULT_THEME, locale=DEFAULT_LOCALE), ms.AutoLoading(): |
|
with antd.Row(gutter=[20, 20], wrap=False, elem_id="chatbot"): |
|
|
|
with antd.Col(md=dict(flex="0 0 260px", span=24, order=0), |
|
span=0, |
|
order=1, |
|
elem_classes="chatbot-conversations", |
|
elem_style=dict( |
|
maxWidth="260px", |
|
minWidth="260px", |
|
overflow="hidden")): |
|
with antd.Flex(vertical=True, |
|
gap="small", |
|
elem_style=dict(height="100%", width="100%", minWidth="0")): |
|
|
|
logo() |
|
|
|
|
|
with antd.Button(value=None, |
|
color="primary", |
|
variant="filled", |
|
block=True, elem_style=dict(maxWidth="100%")) as add_conversation_btn: |
|
ms.Text(get_text("New Conversation", "新建对话")) |
|
with ms.Slot("icon"): |
|
antd.Icon("PlusOutlined") |
|
|
|
|
|
with antdx.Conversations( |
|
elem_classes="chatbot-conversations-list", |
|
elem_style=dict( |
|
width="100%", |
|
minWidth="0", |
|
overflow="hidden", |
|
flex="1" |
|
) |
|
) as conversations: |
|
with ms.Slot('menu.items'): |
|
with antd.Menu.Item( |
|
label="Delete", key="delete", danger=True |
|
) as conversation_delete_menu_item: |
|
with ms.Slot("icon"): |
|
antd.Icon("DeleteOutlined") |
|
|
|
with antd.Col(flex=1, elem_style=dict(height="100%")): |
|
with antd.Flex(vertical=True, |
|
gap="middle", |
|
elem_classes="chatbot-chat"): |
|
|
|
with antdx.Bubble.List( |
|
items=DEFAULT_CONVERSATIONS_HISTORY, |
|
elem_classes="chatbot-chat-messages") as chatbot: |
|
|
|
with ms.Slot("roles"): |
|
|
|
with antdx.Bubble.List.Role( |
|
role="placeholder", |
|
styles=dict(content=dict(width="100%")), |
|
variant="borderless"): |
|
with ms.Slot("messageRender"): |
|
with antd.Space( |
|
direction="vertical", |
|
size=16, |
|
elem_style=dict(width="100%")): |
|
with antdx.Welcome( |
|
styles=dict(icon=dict( |
|
flexShrink=0)), |
|
variant="borderless", |
|
title=get_text( |
|
"Hello, I'm dots.", |
|
"你好,我是 dots."), |
|
description=get_text( |
|
"", |
|
""), |
|
): |
|
with ms.Slot("icon"): |
|
antd.Image(logo_img, |
|
preview=False) |
|
|
|
|
|
|
|
with antdx.Bubble.List.Role( |
|
role="user", |
|
placement="end", |
|
elem_classes="chatbot-chat-message", |
|
class_names=dict( |
|
footer="chatbot-chat-message-footer"), |
|
styles=dict(content=dict( |
|
maxWidth="100%", |
|
overflow='auto', |
|
))): |
|
with ms.Slot( |
|
"messageRender", |
|
params_mapping="""(content) => { |
|
// 检查多种图片存储格式 |
|
let imageCount = 0; |
|
let textContent = ''; |
|
let imagesBase64 = []; |
|
|
|
if (typeof content === 'object') { |
|
// 新格式:检查 images_count |
|
if (content.images_count && content.images_count > 0) { |
|
imageCount = content.images_count; |
|
textContent = content.text || ''; |
|
imagesBase64 = content.images_base64 || []; |
|
} |
|
// 旧格式:检查 images 数组 |
|
else if (content.images && content.images.length > 0) { |
|
imageCount = content.images.length; |
|
textContent = content.text || ''; |
|
imagesBase64 = content.images || []; |
|
} |
|
// 纯文本格式 |
|
else { |
|
textContent = content.text || content; |
|
} |
|
} else { |
|
// 字符串格式 |
|
textContent = content; |
|
} |
|
|
|
if (imageCount > 0 && imagesBase64.length > 0) { |
|
const imageHtml = imagesBase64.map((base64, index) => |
|
`<img src="data:image/jpeg;base64,${base64}" |
|
style="width: 120px; height: 90px; object-fit: cover; border-radius: 6px; margin: 4px; box-shadow: 0 2px 8px rgba(0, 0, 0, 0.1); cursor: pointer;" |
|
alt="Image ${index + 1}" />` |
|
).join(''); |
|
|
|
return { |
|
image_info: { |
|
style: { marginBottom: '8px', fontSize: '13px', color: '#666' }, |
|
value: `📷 包含 ${imageCount} 张图片` |
|
}, |
|
text_content: { |
|
value: textContent |
|
}, |
|
image_gallery: { |
|
value: `<div style="display: flex; flex-wrap: wrap; gap: 8px; margin-bottom: 12px;">${imageHtml}</div>` |
|
} |
|
}; |
|
} |
|
|
|
return { |
|
text_content: { |
|
value: textContent |
|
}, |
|
image_info: { style: { display: 'none' } }, |
|
image_gallery: { value: '' } |
|
}; |
|
}"""): |
|
|
|
antd.Typography.Text(as_item="image_info", type="secondary") |
|
|
|
|
|
ms.Markdown(as_item="image_gallery") |
|
|
|
|
|
ms.Markdown(as_item="text_content") |
|
with ms.Slot("footer", |
|
params_mapping="""(bubble) => { |
|
return { |
|
copy_btn: { |
|
copyable: { text: typeof bubble.content === 'string' ? bubble.content : bubble.content?.text, tooltips: false }, |
|
}, |
|
edit_btn: { conversationKey: bubble.key, disabled: bubble.meta.disabled }, |
|
delete_btn: { conversationKey: bubble.key, disabled: bubble.meta.disabled }, |
|
}; |
|
}"""): |
|
with antd.Typography.Text( |
|
copyable=dict(tooltips=False), |
|
as_item="copy_btn"): |
|
with ms.Slot("copyable.icon"): |
|
with antd.Button(value=None, |
|
size="small", |
|
color="default", |
|
variant="text"): |
|
with ms.Slot("icon"): |
|
antd.Icon("CopyOutlined") |
|
with antd.Button(value=None, |
|
size="small", |
|
color="default", |
|
variant="text"): |
|
with ms.Slot("icon"): |
|
antd.Icon("CheckOutlined") |
|
with antd.Button(value=None, |
|
size="small", |
|
color="default", |
|
variant="text", |
|
as_item="edit_btn" |
|
) as user_edit_btn: |
|
with ms.Slot("icon"): |
|
antd.Icon("EditOutlined") |
|
with antd.Popconfirm( |
|
title="Delete the message", |
|
description= |
|
"Are you sure to delete this message?", |
|
ok_button_props=dict(danger=True), |
|
as_item="delete_btn" |
|
) as user_delete_popconfirm: |
|
with antd.Button(value=None, |
|
size="small", |
|
color="default", |
|
variant="text", |
|
as_item="delete_btn"): |
|
with ms.Slot("icon"): |
|
antd.Icon("DeleteOutlined") |
|
|
|
|
|
with antdx.Bubble.List.Role( |
|
role="assistant", |
|
placement="start", |
|
elem_classes="chatbot-chat-message", |
|
class_names=dict( |
|
footer="chatbot-chat-message-footer"), |
|
styles=dict(content=dict( |
|
maxWidth="100%", overflow='auto'))): |
|
with ms.Slot("avatar"): |
|
antd.Avatar( |
|
os.path.join(os.path.dirname(__file__), |
|
"rednote_hilab.png")) |
|
with ms.Slot( |
|
"messageRender", |
|
params_mapping="""(content, bubble) => { |
|
const has_error = bubble?.meta?.error |
|
const thinking_content = bubble?.meta?.thinking_content || "" |
|
const is_thinking = bubble?.meta?.is_thinking || false |
|
const thinking_done = bubble?.meta?.thinking_done || false |
|
const just_finished_thinking = bubble?.meta?.just_finished_thinking || false |
|
|
|
// 改进的自动折叠逻辑: |
|
// 1. 刚完成thinking且有回答内容时自动折叠 |
|
// 2. 考虑用户交互状态,避免频繁重置 |
|
const shouldAutoCollapse = just_finished_thinking && content && content.trim().length > 0 |
|
|
|
// 动态生成唯一key以触发组件重新渲染,但保持用户控制能力 |
|
let collapseKey = 'thinking' |
|
let collapseProps = {} |
|
|
|
if (shouldAutoCollapse) { |
|
// 刚完成thinking且有内容时,设置为折叠状态 |
|
// 使用时间戳确保key的唯一性,触发折叠 |
|
collapseKey = 'thinking-auto-collapsed-' + Date.now() |
|
collapseProps.active_key = [] // 强制折叠 |
|
} else if (thinking_done) { |
|
// thinking完成但用户可能已经手动展开,使用稳定key |
|
collapseKey = 'thinking-user-controlled' |
|
// 不设置active_key,让用户控制 |
|
} else { |
|
// thinking进行中,默认展开 |
|
collapseKey = 'thinking-active' |
|
collapseProps.default_active_key = ['1'] |
|
} |
|
|
|
return { |
|
thinking_collapse_props: Object.assign({ |
|
key: collapseKey, |
|
style: { |
|
display: (thinking_content || is_thinking) ? 'block' : 'none', |
|
marginBottom: thinking_content || is_thinking ? '12px' : '0' |
|
} |
|
}, collapseProps), |
|
thinking_label: is_thinking ? '🤔 正在思考...' : '🤔 思考过程', |
|
thinking_markdown: { |
|
value: thinking_content || '思考中...' |
|
}, |
|
answer: { |
|
value: content |
|
}, |
|
canceled: bubble.meta?.canceled ? undefined : { style: { display: 'none' } } |
|
} |
|
}"""): |
|
|
|
with antd.Collapse( |
|
size='small', |
|
ghost=True, |
|
elem_classes="thinking-content", |
|
as_item="thinking_collapse_props" |
|
): |
|
with antd.Collapse.Item( |
|
as_item="thinking_label", |
|
key='1', |
|
force_render=True |
|
): |
|
ms.Markdown(as_item="thinking_markdown") |
|
|
|
|
|
ms.Markdown( |
|
as_item="answer", |
|
elem_classes="answer-content") |
|
|
|
antd.Divider(as_item="canceled") |
|
antd.Typography.Text(get_text( |
|
"Chat completion paused.", "聊天已暂停。"), |
|
as_item="canceled", |
|
type="warning") |
|
|
|
with ms.Slot("footer", |
|
params_mapping="""(bubble) => { |
|
if (bubble?.meta?.end) { |
|
return { |
|
copy_btn: { |
|
copyable: { text: bubble.content, tooltips: false }, |
|
}, |
|
regenerate_btn: { conversationKey: bubble.key, disabled: bubble.meta.disabled }, |
|
delete_btn: { conversationKey: bubble.key, disabled: bubble.meta.disabled }, |
|
edit_btn: { conversationKey: bubble.key, disabled: bubble.meta.disabled }, |
|
}; |
|
} |
|
return { actions_container: { style: { display: 'none' } } }; |
|
}"""): |
|
with ms.Div(as_item="actions_container"): |
|
with antd.Typography.Text( |
|
copyable=dict(tooltips=False), |
|
as_item="copy_btn"): |
|
with ms.Slot("copyable.icon"): |
|
with antd.Button( |
|
value=None, |
|
size="small", |
|
color="default", |
|
variant="text"): |
|
with ms.Slot("icon"): |
|
antd.Icon( |
|
"CopyOutlined") |
|
with antd.Button( |
|
value=None, |
|
size="small", |
|
color="default", |
|
variant="text"): |
|
with ms.Slot("icon"): |
|
antd.Icon( |
|
"CheckOutlined") |
|
|
|
with antd.Popconfirm( |
|
title=get_text( |
|
"Regenerate the message", |
|
"重新生成消息"), |
|
description=get_text( |
|
"Regenerate the message will also delete all subsequent messages.", |
|
"重新生成消息将会删除所有的后续消息。"), |
|
ok_button_props=dict( |
|
danger=True), |
|
as_item="regenerate_btn" |
|
) as chatbot_regenerate_popconfirm: |
|
with antd.Button( |
|
value=None, |
|
size="small", |
|
color="default", |
|
variant="text", |
|
as_item="regenerate_btn", |
|
): |
|
with ms.Slot("icon"): |
|
antd.Icon("SyncOutlined") |
|
with antd.Button(value=None, |
|
size="small", |
|
color="default", |
|
variant="text", |
|
as_item="edit_btn" |
|
) as chatbot_edit_btn: |
|
with ms.Slot("icon"): |
|
antd.Icon("EditOutlined") |
|
with antd.Popconfirm( |
|
title=get_text("Delete the message", "删除消息"), |
|
description=get_text( |
|
"Are you sure to delete this message?", |
|
"确定要删除这条消息吗?"), |
|
ok_button_props=dict( |
|
danger=True), |
|
as_item="delete_btn" |
|
) as chatbot_delete_popconfirm: |
|
with antd.Button( |
|
value=None, |
|
size="small", |
|
color="default", |
|
variant="text", |
|
as_item="delete_btn"): |
|
with ms.Slot("icon"): |
|
antd.Icon("DeleteOutlined") |
|
|
|
|
|
|
|
|
|
|
|
with antdx.Suggestion( |
|
|
|
should_trigger="""(e, { onTrigger, onKeyDown }) => { |
|
switch(e.key) { |
|
case '/': |
|
onTrigger() |
|
break |
|
case 'ArrowRight': |
|
case 'ArrowLeft': |
|
case 'ArrowUp': |
|
case 'ArrowDown': |
|
break; |
|
default: |
|
onTrigger(false) |
|
} |
|
onKeyDown(e) |
|
}""") as suggestion: |
|
with ms.Slot("children"): |
|
with antdx.Sender(placeholder=get_text( |
|
"Enter Prompt (Drag & Drop or Ctrl+V to paste images)", |
|
"输入内容(可拖拽图片或 Ctrl+V 粘贴图片)"), ) as sender: |
|
with ms.Slot("actions"): |
|
|
|
with antd.Button( |
|
type="text", |
|
size="large", |
|
visible=False, |
|
elem_style=dict( |
|
color="#ff4d4f", |
|
border="none", |
|
background="transparent" |
|
) |
|
) as stop_btn: |
|
with ms.Slot("icon"): |
|
antd.Icon("PauseCircleOutlined") |
|
with ms.Slot("prefix"): |
|
|
|
with antd.Space(size="small"): |
|
with antd.Tooltip(title="点击上传图片", color="green"): |
|
with antd.Upload( |
|
accept="image/*", |
|
multiple=True, |
|
show_upload_list=False, |
|
elem_style=dict(display="inline-block") |
|
) as image_upload: |
|
with antd.Badge( |
|
count=0, |
|
size="small", |
|
color="#52c41a", |
|
elem_style=dict(display="block") |
|
) as green_image_indicator: |
|
with antd.Button( |
|
type="text", |
|
size="large", |
|
elem_style=dict( |
|
color="#52c41a", |
|
border="none", |
|
background="transparent" |
|
) |
|
): |
|
with ms.Slot("icon"): |
|
antd.Icon("PictureOutlined") |
|
|
|
|
|
with antd.Tooltip(title="清除已上传的图片", color="red"): |
|
with antd.Button( |
|
type="text", |
|
size="large", |
|
elem_style=dict( |
|
color="#ff4d4f", |
|
border="none", |
|
background="transparent", |
|
display="none" |
|
) |
|
) as trash_button: |
|
with ms.Slot("icon"): |
|
antd.Icon("DeleteOutlined") |
|
|
|
|
|
with antd.Tooltip(title=get_text( |
|
"Clear Conversation History", |
|
"清空对话历史"), ): |
|
with antd.Button( |
|
value=None, |
|
type="text") as clear_btn: |
|
with ms.Slot("icon"): |
|
antd.Icon("ClearOutlined") |
|
|
|
|
|
with antd.Modal(title=get_text("Edit Message", "编辑消息"), |
|
open=False, |
|
centered=True, |
|
width="60%") as edit_modal: |
|
edit_textarea = antd.Input.Textarea(auto_size=dict(minRows=2, |
|
maxRows=6), |
|
elem_style=dict(width="100%")) |
|
|
|
if save_history: |
|
browser_state = gr.BrowserState( |
|
{ |
|
"conversations_history": {}, |
|
"conversations": [], |
|
}, |
|
storage_key="dots_chatbot_storage") |
|
state.change(fn=Gradio_Events.update_browser_state, |
|
inputs=[state], |
|
outputs=[browser_state]) |
|
|
|
demo.load(fn=Gradio_Events.apply_browser_state, |
|
inputs=[browser_state, state], |
|
outputs=[conversations, state]) |
|
|
|
add_conversation_btn.click(fn=Gradio_Events.new_chat, |
|
inputs=[state], |
|
outputs=[conversations, chatbot, state]) |
|
conversations.active_change(fn=Gradio_Events.select_conversation, |
|
inputs=[state], |
|
outputs=[conversations, chatbot, state]) |
|
conversations.menu_click(fn=Gradio_Events.click_conversation_menu, |
|
inputs=[state], |
|
outputs=[conversations, chatbot, state]) |
|
|
|
clear_btn.click(fn=Gradio_Events.clear_conversation_history, |
|
inputs=[state], |
|
outputs=[chatbot, state]) |
|
|
|
suggestion.select(fn=Gradio_Events.select_suggestion, |
|
inputs=[sender], |
|
outputs=[sender]) |
|
|
|
gr.on(triggers=[user_edit_btn.click, chatbot_edit_btn.click], |
|
fn=Gradio_Events.edit_message, |
|
inputs=[state], |
|
outputs=[edit_textarea, state]).then(fn=Gradio_Events.open_modal, |
|
outputs=[edit_modal]) |
|
edit_modal.ok(fn=Gradio_Events.confirm_edit_message, |
|
inputs=[edit_textarea, state], |
|
outputs=[chatbot, state]).then(fn=Gradio_Events.close_modal, |
|
outputs=[edit_modal]) |
|
edit_modal.cancel(fn=Gradio_Events.close_modal, outputs=[edit_modal]) |
|
gr.on(triggers=[ |
|
chatbot_delete_popconfirm.confirm, user_delete_popconfirm.confirm |
|
], |
|
fn=Gradio_Events.delete_message, |
|
inputs=[state], |
|
outputs=[chatbot, state]) |
|
|
|
regenerating_event = chatbot_regenerate_popconfirm.confirm( |
|
fn=Gradio_Events.regenerate_message, |
|
inputs=[state], |
|
outputs=[sender, clear_btn, conversation_delete_menu_item, add_conversation_btn, conversations, chatbot, state, |
|
image_upload, green_image_indicator, trash_button, stop_btn]) |
|
|
|
|
|
image_upload.change(fn=Gradio_Events.handle_image_upload, |
|
inputs=[image_upload, state], |
|
outputs=[state, green_image_indicator, trash_button]) |
|
|
|
|
|
trash_button.click(fn=Gradio_Events.clear_images, |
|
inputs=[state], |
|
outputs=[state, green_image_indicator, trash_button, image_upload]) |
|
|
|
submit_event = sender.submit(fn=Gradio_Events.submit, |
|
inputs=[sender, state], |
|
outputs=[sender, clear_btn, conversation_delete_menu_item, |
|
add_conversation_btn, conversations, chatbot, state, |
|
image_upload, green_image_indicator, trash_button, stop_btn]) |
|
|
|
stop_btn.click(fn=None, cancels=[submit_event, regenerating_event]) |
|
stop_btn.click(fn=Gradio_Events.cancel, |
|
inputs=[state], |
|
outputs=[ |
|
sender, conversation_delete_menu_item, clear_btn, |
|
conversations, add_conversation_btn, chatbot, state, stop_btn |
|
]) |
|
|
|
sender.cancel(fn=None, cancels=[submit_event, regenerating_event]) |
|
sender.cancel(fn=Gradio_Events.cancel, |
|
inputs=[state], |
|
outputs=[ |
|
sender, conversation_delete_menu_item, clear_btn, |
|
conversations, add_conversation_btn, chatbot, state, stop_btn |
|
]) |
|
|
|
if __name__ == "__main__": |
|
import sys |
|
import argparse |
|
|
|
parser = argparse.ArgumentParser(description="启动 Gradio Demo") |
|
parser.add_argument("--port", type=int, default=7860, help="指定服务端口,默认为7960") |
|
args = parser.parse_args() |
|
|
|
demo.queue(default_concurrency_limit=200).launch( |
|
ssr_mode=False, |
|
max_threads=200, |
|
server_port=args.port, |
|
server_name="0.0.0.0" |
|
) |