redfernstech commited on
Commit
3cf52c1
·
verified ·
1 Parent(s): a530fb2

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +40 -10
app.py CHANGED
@@ -3,6 +3,7 @@ from gtts import gTTS
3
  import time
4
  from fastapi import FastAPI, Request
5
  from fastapi.responses import HTMLResponse
 
6
  from fastapi.staticfiles import StaticFiles
7
  from llama_index.core import StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader, ChatPromptTemplate, Settings
8
  from llama_index.llms.huggingface import HuggingFaceInferenceAPI
@@ -17,15 +18,18 @@ from huggingface_hub import InferenceClient
17
  import json
18
  import re
19
  from deep_translator import GoogleTranslator
 
 
 
20
 
21
 
22
-
23
  # Define Pydantic model for incoming request body
24
  class MessageRequest(BaseModel):
25
  message: str
26
  language: str
27
 
28
- repo_id = "openai-community/gpt2"
29
  llm_client = InferenceClient(
30
  model=repo_id,
31
  token=os.getenv("HF_TOKEN"),
@@ -61,8 +65,8 @@ templates = Jinja2Templates(directory="static")
61
 
62
  # Configure Llama index settings
63
  Settings.llm = HuggingFaceInferenceAPI(
64
- model_name="openai-community/gpt2",
65
- tokenizer_name="openai-community/gpt2",
66
  context_window=3000,
67
  token=os.getenv("HF_TOKEN"),
68
  max_new_tokens=512,
@@ -86,7 +90,17 @@ def data_ingestion_from_directory():
86
  storage_context = StorageContext.from_defaults()
87
  index = VectorStoreIndex.from_documents(documents)
88
  index.storage_context.persist(persist_dir=PERSIST_DIR)
 
 
89
 
 
 
 
 
 
 
 
 
90
  def initialize():
91
  start_time = time.time()
92
  data_ingestion_from_directory() # Process PDF ingestion at startup
@@ -110,13 +124,20 @@ def split_name(full_name):
110
  return first_name, last_name
111
 
112
  initialize() # Run initialization tasks
113
-
 
 
 
 
 
 
 
114
  def handle_query(query):
115
  chat_text_qa_msgs = [
116
  (
117
  "user",
118
  """
119
- You are the ITC GrandChola Hotel voice chatbot and your name is hotel helper. Your goal is to provide accurate, professional, and helpful answers to user queries based on the Taj hotel data. Always ensure your responses are clear and concise. Give response within 10-15 words only. If you don't know the answer, you can say 'I don't know'. If you need more information, you can ask the user for clarification. You can also ask the user if they need help with anything else. Remember to be polite and professional at all times. If you are ready to start, you can say 'I am ready'. If you need to take a break, you can say 'I need a break'. If you need to end the conversation, you can say 'Goodbye'.
120
  {context_str}
121
  Question:
122
  {query_str}
@@ -144,7 +165,8 @@ def handle_query(query):
144
  response = "Sorry, I couldn't find an answer."
145
  current_chat_history.append((query, response))
146
  return response
147
-
 
148
  @app.get("/ch/{id}", response_class=HTMLResponse)
149
  async def load_chat(request: Request, id: str):
150
  return templates.TemplateResponse("index.html", {"request": request, "user_id": id})
@@ -152,7 +174,13 @@ async def load_chat(request: Request, id: str):
152
  async def load_chat(request: Request, id: str):
153
  return templates.TemplateResponse("voice.html", {"request": request, "user_id": id})
154
 
155
-
 
 
 
 
 
 
156
 
157
  @app.post("/chat/")
158
  async def chat(request: MessageRequest):
@@ -182,12 +210,14 @@ async def chat(request: MessageRequest):
182
  }
183
  chat_history.append(message_data)
184
  tts = gTTS(text=response1, lang=language_code)
185
- audio_path = "response.mp3"
186
  tts.save(audio_path)
187
  return {"response": response1,
188
- "audioUrl": f"https://redfernstech-hotel-gtts.hf.space/audio/{audio_path}"}
 
189
 
190
  @app.get("/")
191
  def read_root(request: Request):
192
  return templates.TemplateResponse("home.html", {"request": request})
193
 
 
 
3
  import time
4
  from fastapi import FastAPI, Request
5
  from fastapi.responses import HTMLResponse
6
+ from fastapi.responses import FileResponse
7
  from fastapi.staticfiles import StaticFiles
8
  from llama_index.core import StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader, ChatPromptTemplate, Settings
9
  from llama_index.llms.huggingface import HuggingFaceInferenceAPI
 
18
  import json
19
  import re
20
  from deep_translator import GoogleTranslator
21
+ from dotenv import load_dotenv
22
+ import random
23
+ import string
24
 
25
 
26
+ load_dotenv()
27
  # Define Pydantic model for incoming request body
28
  class MessageRequest(BaseModel):
29
  message: str
30
  language: str
31
 
32
+ repo_id = "meta-llama/Meta-Llama-3-8B-Instruct"
33
  llm_client = InferenceClient(
34
  model=repo_id,
35
  token=os.getenv("HF_TOKEN"),
 
65
 
66
  # Configure Llama index settings
67
  Settings.llm = HuggingFaceInferenceAPI(
68
+ model_name="meta-llama/Meta-Llama-3-8B-Instruct",
69
+ tokenizer_name="meta-llama/Meta-Llama-3-8B-Instruct",
70
  context_window=3000,
71
  token=os.getenv("HF_TOKEN"),
72
  max_new_tokens=512,
 
90
  storage_context = StorageContext.from_defaults()
91
  index = VectorStoreIndex.from_documents(documents)
92
  index.storage_context.persist(persist_dir=PERSIST_DIR)
93
+ def generate_unique_filename(extension="txt"):
94
+ # Current timestamp
95
 
96
+ timestamp = time.strftime("%Y%m%d%H%M%S")
97
+
98
+ # Generate a random string of 6 characters
99
+ random_str = ''.join(random.choices(string.ascii_letters + string.digits, k=6))
100
+
101
+ # Combine timestamp and random string
102
+ unique_filename = f"{timestamp}_{random_str}.{extension}"
103
+ return unique_filename
104
  def initialize():
105
  start_time = time.time()
106
  data_ingestion_from_directory() # Process PDF ingestion at startup
 
124
  return first_name, last_name
125
 
126
  initialize() # Run initialization tasks
127
+ #You are the ITC GrandChola Hotel voice chatbot and your name is hotel helper.
128
+ # Your goal is to provide accurate, professional, and helpful answers to user queries
129
+ # based on the Taj hotel data. Always ensure your responses are clear and concise.
130
+ # Give response within 10-15 words only. If you don't know the answer,
131
+ # you can say 'I don't know'. If you need more information, you can ask the user for clarification.
132
+ # You can also ask the user if they need help with anything else. Remember to be polite and professional at all times. If you are ready to start, you can say 'I am ready'. If you need to take a break, you can say 'I need a break'.
133
+ # If you need to end the conversation, you can say 'Goodbye'.
134
+
135
  def handle_query(query):
136
  chat_text_qa_msgs = [
137
  (
138
  "user",
139
  """
140
+ You are an assistant designed to help customers with inquiries about ITC Grand Chola Hotel. Your goal is to provide accurate, professional, and helpful answers based on available hotel information. If the user greets or doesn't ask a specific question, respond politely by encouraging them to ask about the hotel. Answer questions in a single sentence, within 5-10 words, while maintaining politeness and professionalism at all times.
141
  {context_str}
142
  Question:
143
  {query_str}
 
165
  response = "Sorry, I couldn't find an answer."
166
  current_chat_history.append((query, response))
167
  return response
168
+ def generate_unique_audio_filename():
169
+ return f"audio/response_{uuid.uuid4().hex}.mp3"
170
  @app.get("/ch/{id}", response_class=HTMLResponse)
171
  async def load_chat(request: Request, id: str):
172
  return templates.TemplateResponse("index.html", {"request": request, "user_id": id})
 
174
  async def load_chat(request: Request, id: str):
175
  return templates.TemplateResponse("voice.html", {"request": request, "user_id": id})
176
 
177
+ @app.get("/audio/{filename}")
178
+ async def get_audio(filename: str):
179
+ audio_path = os.path.join(os.getcwd(), filename) # Ensure correct file path
180
+ if os.path.exists(audio_path):
181
+ return FileResponse(audio_path)
182
+ else:
183
+ raise HTTPException(status_code=404, detail="Audio file not found.")
184
 
185
  @app.post("/chat/")
186
  async def chat(request: MessageRequest):
 
210
  }
211
  chat_history.append(message_data)
212
  tts = gTTS(text=response1, lang=language_code)
213
+ audio_path = generate_unique_filename("mp3")
214
  tts.save(audio_path)
215
  return {"response": response1,
216
+ "audioUrl": f"http://localhost:8000/audio/{audio_path}"}
217
+
218
 
219
  @app.get("/")
220
  def read_root(request: Request):
221
  return templates.TemplateResponse("home.html", {"request": request})
222
 
223
+