Spaces:
Sleeping
Sleeping
File size: 6,261 Bytes
4ddf4f2 12fc0e4 4ddf4f2 1378b3b 4ddf4f2 1378b3b c3c81f6 ab372d4 1378b3b 4ddf4f2 22b0671 12fc0e4 c3c81f6 00607ed 039a3ce 65a487f 4ddf4f2 ab372d4 1378b3b c3c81f6 1378b3b 4dd02a3 1378b3b 12fc0e4 4ddf4f2 039a3ce 4ddf4f2 12fc0e4 4ddf4f2 12fc0e4 65a487f 4ddf4f2 c2a4b77 4ddf4f2 7845a86 4ddf4f2 12fc0e4 4ddf4f2 12fc0e4 4ddf4f2 12fc0e4 4ddf4f2 40057ee 12fc0e4 1ba3b01 12fc0e4 1dd0a3a 12fc0e4 8a42a65 4ddf4f2 12c72db ab372d4 4ddf4f2 d353726 ab372d4 fab4b1c 932bf9e ab372d4 204de46 4ddf4f2 fab4b1c 12fc0e4 1c8ab2e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 |
import os
import time
from fastapi import FastAPI, Request
from fastapi.responses import HTMLResponse
from fastapi.staticfiles import StaticFiles
from llama_index.core import StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader, ChatPromptTemplate, Settings
from llama_index.llms.huggingface import HuggingFaceInferenceAPI
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from pydantic import BaseModel
from fastapi.responses import JSONResponse
import uuid # for generating unique IDs
import datetime
from fastapi.middleware.cors import CORSMiddleware
from fastapi.templating import Jinja2Templates
from huggingface_hub import InferenceClient
import json
import re
from googletrans import Translator, LANGUAGES
# Define Pydantic model for incoming request body
class MessageRequest(BaseModel):
message: str
language: str
repo_id = "meta-llama/Meta-Llama-3-8B-Instruct"
llm_client = InferenceClient(
model=repo_id,
token=os.getenv("HF_TOKEN"),
)
os.environ["HF_TOKEN"] = os.getenv("HF_TOKEN")
app = FastAPI()
translator = Translator()
@app.middleware("http")
async def add_security_headers(request: Request, call_next):
response = await call_next(request)
response.headers["Content-Security-Policy"] = "frame-ancestors *; frame-src *; object-src *;"
response.headers["X-Frame-Options"] = "ALLOWALL"
return response
# Allow CORS requests from any domain
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
@app.get("/favicon.ico")
async def favicon():
return HTMLResponse("") # or serve a real favicon if you have one
app.mount("/static", StaticFiles(directory="static"), name="static")
templates = Jinja2Templates(directory="static")
# Configure Llama index settings
Settings.llm = HuggingFaceInferenceAPI(
model_name="meta-llama/Meta-Llama-3-8B-Instruct",
tokenizer_name="meta-llama/Meta-Llama-3-8B-Instruct",
context_window=3000,
token=os.getenv("HF_TOKEN"),
max_new_tokens=512,
generate_kwargs={"temperature": 0.1},
)
Settings.embed_model = HuggingFaceEmbedding(
model_name="BAAI/bge-small-en-v1.5"
)
PERSIST_DIR = "db"
PDF_DIRECTORY = 'data'
# Ensure directories exist
os.makedirs(PDF_DIRECTORY, exist_ok=True)
os.makedirs(PERSIST_DIR, exist_ok=True)
chat_history = []
current_chat_history = []
def data_ingestion_from_directory():
documents = SimpleDirectoryReader(PDF_DIRECTORY).load_data()
storage_context = StorageContext.from_defaults()
index = VectorStoreIndex.from_documents(documents)
index.storage_context.persist(persist_dir=PERSIST_DIR)
def initialize():
start_time = time.time()
data_ingestion_from_directory() # Process PDF ingestion at startup
print(f"Data ingestion time: {time.time() - start_time} seconds")
def split_name(full_name):
# Split the name by spaces
words = full_name.strip().split()
# Logic for determining first name and last name
if len(words) == 1:
first_name = ''
last_name = words[0]
elif len(words) == 2:
first_name = words[0]
last_name = words[1]
else:
first_name = words[0]
last_name = ' '.join(words[1:])
return first_name, last_name
initialize() # Run initialization tasks
def handle_query(query):
chat_text_qa_msgs = [
(
"user",
"""
You are the Hotel voice chatbot and your name is hotel helper. Your goal is to provide accurate, professional, and helpful answers to user queries based on the hotel's data. Always ensure your responses are clear and concise. Give response within 10-15 words only. You need to give an answer in the same language used by the user.
{context_str}
Question:
{query_str}
"""
)
]
text_qa_template = ChatPromptTemplate.from_messages(chat_text_qa_msgs)
storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR)
index = load_index_from_storage(storage_context)
context_str = ""
for past_query, response in reversed(current_chat_history):
if past_query.strip():
context_str += f"User asked: '{past_query}'\nBot answered: '{response}'\n"
query_engine = index.as_query_engine(text_qa_template=text_qa_template, context_str=context_str)
print(query)
answer = query_engine.query(query)
if hasattr(answer, 'response'):
response = answer.response
elif isinstance(answer, dict) and 'response' in answer:
response = answer['response']
else:
response = "Sorry, I couldn't find an answer."
current_chat_history.append((query, response))
return response
@app.get("/ch/{id}", response_class=HTMLResponse)
async def load_chat(request: Request, id: str):
return templates.TemplateResponse("index.html", {"request": request, "user_id": id})
@app.get("/voice/{id}", response_class=HTMLResponse)
async def load_chat(request: Request, id: str):
return templates.TemplateResponse("voice.html", {"request": request, "user_id": id})
@app.post("/chat/")
async def chat(request: MessageRequest):
message = request.message # Access the message from the request body
language = request.language
language_code = request.language.split('-')[0]
if language_code not in LANGUAGES:
return {"response": "Unsupported language selected."}
response = handle_query(message) # Process the message
response1 = response
try:
response1 = translator.translate(response, dest=language_code).text
print(response1)
except Exception as e:
# Handle translation errors
print(f"Translation error: {e}")
translated_response = "Sorry, I couldn't translate the response."
print(f"Selected Language: {language}")
message_data = {
"sender": "User",
"message": message,
"response": response,
"timestamp": datetime.datetime.now().isoformat()
}
chat_history.append(message_data)
return {"response": response1}
@app.get("/")
def read_root(request: Request):
return templates.TemplateResponse("home.html", {"request": request})
|