File size: 6,261 Bytes
4ddf4f2
 
12fc0e4
4ddf4f2
 
 
 
 
 
1378b3b
 
4ddf4f2
1378b3b
 
c3c81f6
 
 
ab372d4
1378b3b
4ddf4f2
 
 
22b0671
12fc0e4
c3c81f6
 
 
 
 
00607ed
039a3ce
65a487f
4ddf4f2
ab372d4
1378b3b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c3c81f6
1378b3b
4dd02a3
1378b3b
 
12fc0e4
4ddf4f2
 
 
 
 
039a3ce
4ddf4f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12fc0e4
4ddf4f2
 
 
 
 
 
 
 
 
 
12fc0e4
65a487f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ddf4f2
 
 
 
 
 
 
 
c2a4b77
4ddf4f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7845a86
4ddf4f2
 
 
12fc0e4
4ddf4f2
12fc0e4
4ddf4f2
12fc0e4
4ddf4f2
 
40057ee
12fc0e4
1ba3b01
 
 
12fc0e4
1dd0a3a
12fc0e4
8a42a65
4ddf4f2
 
 
 
12c72db
ab372d4
 
 
4ddf4f2
d353726
ab372d4
fab4b1c
932bf9e
ab372d4
 
 
 
204de46
4ddf4f2
 
 
 
 
 
 
fab4b1c
12fc0e4
 
1c8ab2e
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import os
import time
from fastapi import FastAPI, Request
from fastapi.responses import HTMLResponse
from fastapi.staticfiles import StaticFiles
from llama_index.core import StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader, ChatPromptTemplate, Settings
from llama_index.llms.huggingface import HuggingFaceInferenceAPI
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from pydantic import BaseModel
from fastapi.responses import JSONResponse
import uuid  # for generating unique IDs
import datetime
from fastapi.middleware.cors import CORSMiddleware
from fastapi.templating import Jinja2Templates
from huggingface_hub import InferenceClient
import json
import re
from googletrans import Translator, LANGUAGES

# Define Pydantic model for incoming request body
class MessageRequest(BaseModel):
    message: str
    language: str

repo_id = "meta-llama/Meta-Llama-3-8B-Instruct"
llm_client = InferenceClient(
    model=repo_id,
    token=os.getenv("HF_TOKEN"),
)

os.environ["HF_TOKEN"] = os.getenv("HF_TOKEN")

app = FastAPI()
translator = Translator()
@app.middleware("http")
async def add_security_headers(request: Request, call_next):
    response = await call_next(request)
    response.headers["Content-Security-Policy"] = "frame-ancestors *; frame-src *; object-src *;"
    response.headers["X-Frame-Options"] = "ALLOWALL"
    return response

# Allow CORS requests from any domain
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

@app.get("/favicon.ico")
async def favicon():
    return HTMLResponse("")  # or serve a real favicon if you have one

app.mount("/static", StaticFiles(directory="static"), name="static")

templates = Jinja2Templates(directory="static")

# Configure Llama index settings
Settings.llm = HuggingFaceInferenceAPI(
    model_name="meta-llama/Meta-Llama-3-8B-Instruct",
    tokenizer_name="meta-llama/Meta-Llama-3-8B-Instruct",
    context_window=3000,
    token=os.getenv("HF_TOKEN"),
    max_new_tokens=512,
    generate_kwargs={"temperature": 0.1},
)
Settings.embed_model = HuggingFaceEmbedding(
    model_name="BAAI/bge-small-en-v1.5"
)

PERSIST_DIR = "db"
PDF_DIRECTORY = 'data'

# Ensure directories exist
os.makedirs(PDF_DIRECTORY, exist_ok=True)
os.makedirs(PERSIST_DIR, exist_ok=True)
chat_history = []
current_chat_history = []

def data_ingestion_from_directory():
    documents = SimpleDirectoryReader(PDF_DIRECTORY).load_data()
    storage_context = StorageContext.from_defaults()
    index = VectorStoreIndex.from_documents(documents)
    index.storage_context.persist(persist_dir=PERSIST_DIR)

def initialize():
    start_time = time.time()
    data_ingestion_from_directory()  # Process PDF ingestion at startup
    print(f"Data ingestion time: {time.time() - start_time} seconds")

def split_name(full_name):
    # Split the name by spaces
    words = full_name.strip().split()
    
    # Logic for determining first name and last name
    if len(words) == 1:
        first_name = ''
        last_name = words[0]
    elif len(words) == 2:
        first_name = words[0]
        last_name = words[1]
    else:
        first_name = words[0]
        last_name = ' '.join(words[1:])
    
    return first_name, last_name

initialize()  # Run initialization tasks

def handle_query(query):
    chat_text_qa_msgs = [
        (
            "user",
            """
            You are the Hotel voice chatbot and your name is hotel helper. Your goal is to provide accurate, professional, and helpful answers to user queries based on the hotel's data. Always ensure your responses are clear and concise. Give response within 10-15 words only. You need to give an answer in the same language used by the user.       
            {context_str}
            Question:
            {query_str}
            """
        )
    ]
    text_qa_template = ChatPromptTemplate.from_messages(chat_text_qa_msgs)
    
    storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR)
    index = load_index_from_storage(storage_context)
    context_str = ""
    for past_query, response in reversed(current_chat_history):
        if past_query.strip():
            context_str += f"User asked: '{past_query}'\nBot answered: '{response}'\n"

    query_engine = index.as_query_engine(text_qa_template=text_qa_template, context_str=context_str)
    print(query)
    answer = query_engine.query(query)

    if hasattr(answer, 'response'):
        response = answer.response
    elif isinstance(answer, dict) and 'response' in answer:
        response = answer['response']
    else:
        response = "Sorry, I couldn't find an answer."
    current_chat_history.append((query, response))
    return response

@app.get("/ch/{id}", response_class=HTMLResponse)
async def load_chat(request: Request, id: str):
    return templates.TemplateResponse("index.html", {"request": request, "user_id": id})
@app.get("/voice/{id}", response_class=HTMLResponse)
async def load_chat(request: Request, id: str):
    return templates.TemplateResponse("voice.html", {"request": request, "user_id": id})



@app.post("/chat/")
async def chat(request: MessageRequest):
    message = request.message  # Access the message from the request body
    language = request.language
    language_code = request.language.split('-')[0]
    if language_code not in LANGUAGES:
        return {"response": "Unsupported language selected."}
    response = handle_query(message)  # Process the message
    response1 = response
    try:
        response1 = translator.translate(response, dest=language_code).text
        print(response1)
    except Exception as e:
        # Handle translation errors
        print(f"Translation error: {e}")
        translated_response = "Sorry, I couldn't translate the response."
    print(f"Selected Language: {language}")
    message_data = {
        "sender": "User",
        "message": message,
        "response": response,
        "timestamp": datetime.datetime.now().isoformat()
    }
    chat_history.append(message_data)
    return {"response": response1}

@app.get("/")
def read_root(request: Request):
    return templates.TemplateResponse("home.html", {"request": request})