Spaces:
Runtime error
Runtime error
Upload 6 files
Browse files- Dockerfile +24 -0
- app.py +29 -0
- gtts_utils.py +10 -0
- llm_utils.py +8 -0
- requirements.txt +5 -0
- whisper_utils.py +7 -0
Dockerfile
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Use the official Python image as the base image
|
2 |
+
FROM python:3.9-slim
|
3 |
+
|
4 |
+
# Set the working directory
|
5 |
+
WORKDIR /app
|
6 |
+
|
7 |
+
# Copy the backend files into the container
|
8 |
+
COPY backend/ /app
|
9 |
+
|
10 |
+
# Install system dependencies
|
11 |
+
RUN apt-get update && apt-get install -y \
|
12 |
+
gcc \
|
13 |
+
libsndfile1 \
|
14 |
+
&& rm -rf /var/lib/apt/lists/*
|
15 |
+
|
16 |
+
# Install Python dependencies
|
17 |
+
RUN pip install --upgrade pip
|
18 |
+
RUN pip install -r requirements.txt
|
19 |
+
|
20 |
+
# Expose the FastAPI server port
|
21 |
+
EXPOSE 8000
|
22 |
+
|
23 |
+
# Run the FastAPI app with uvicorn
|
24 |
+
CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "8000", "--reload"]
|
app.py
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI, UploadFile
|
2 |
+
from fastapi.responses import FileResponse
|
3 |
+
from backend.whisper_utils import transcribe_audio
|
4 |
+
from backend.gtts_utils import generate_speech
|
5 |
+
from backend.llm_utils import get_llm_response
|
6 |
+
import os
|
7 |
+
|
8 |
+
app = FastAPI()
|
9 |
+
|
10 |
+
@app.post("/transcribe/")
|
11 |
+
async def transcribe(file: UploadFile):
|
12 |
+
file_path = f"audio/{file.filename}"
|
13 |
+
with open(file_path, "wb") as audio:
|
14 |
+
audio.write(await file.read())
|
15 |
+
|
16 |
+
text = transcribe_audio(file_path)
|
17 |
+
os.remove(file_path) # Cleanup audio file
|
18 |
+
return {"transcription": text}
|
19 |
+
|
20 |
+
@app.post("/response/")
|
21 |
+
async def get_response(input_text: str):
|
22 |
+
llm_response = get_llm_response(input_text)
|
23 |
+
audio_path = generate_speech(llm_response)
|
24 |
+
return {"response": llm_response, "audio_url": audio_path}
|
25 |
+
|
26 |
+
@app.get("/audio/{file_name}")
|
27 |
+
async def serve_audio(file_name: str):
|
28 |
+
file_path = f"audio/{file_name}"
|
29 |
+
return FileResponse(file_path)
|
gtts_utils.py
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from gtts import gTTS
|
2 |
+
import os
|
3 |
+
import uuid
|
4 |
+
|
5 |
+
def generate_speech(text: str) -> str:
|
6 |
+
file_name = f"{uuid.uuid4()}.mp3"
|
7 |
+
file_path = f"audio/{file_name}"
|
8 |
+
tts = gTTS(text)
|
9 |
+
tts.save(file_path)
|
10 |
+
return file_path
|
llm_utils.py
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import pipeline
|
2 |
+
|
3 |
+
# Load the Hugging Face LLM
|
4 |
+
llm = pipeline("text-generation", model="gpt2", max_length=100)
|
5 |
+
|
6 |
+
def get_llm_response(prompt: str) -> str:
|
7 |
+
response = llm(prompt)
|
8 |
+
return response[0]["generated_text"]
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
fastapi
|
2 |
+
uvicorn
|
3 |
+
openai-whisper
|
4 |
+
transformers
|
5 |
+
gtts
|
whisper_utils.py
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import whisper
|
2 |
+
|
3 |
+
model = whisper.load_model("base")
|
4 |
+
|
5 |
+
def transcribe_audio(file_path: str) -> str:
|
6 |
+
result = model.transcribe(file_path)
|
7 |
+
return result["text"]
|