project21 commited on
Commit
f305d33
·
verified ·
1 Parent(s): 3085f78

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +178 -68
app.py CHANGED
@@ -1,15 +1,28 @@
 
1
  import gradio as gr
2
- import tensorflow
 
 
 
3
  from tensorflow.keras.utils import img_to_array,load_img
4
- from keras.models import load_model
5
  import numpy as np
6
 
7
  # Load the pre-trained model from the local path
8
- model_path = 'Mango.h5'
9
- model = load_model(model_path) # Load the model here
 
 
 
 
 
 
 
 
 
10
 
11
  def predict_disease(image_file, model, all_labels):
12
-
13
  try:
14
  # Load and preprocess the image
15
  img = load_img(image_file, target_size=(224, 224)) # Use load_img from tensorflow.keras.utils
@@ -25,8 +38,8 @@ def predict_disease(image_file, model, all_labels):
25
  predicted_label = all_labels[predicted_class]
26
 
27
  # Print the predicted label to the console
28
-
29
- if predicted_label=='Mango Anthracrose':
30
  predicted_label = """<style>
31
  li{
32
  font-size: 15px;
@@ -57,21 +70,20 @@ def predict_disease(image_file, model, all_labels):
57
  }
58
 
59
  </style>
60
- <h3><center><b>Mango Anthracrose</b></center></h3>
61
  <h4>PESTICIDES TO BE USED:</h4>
62
  <ul>
63
- <li>1. Mancozeb</li>
64
- <li>2. Azoxystrobin</li>
65
- <li>3. carbendazim</li>
66
- <li>4. Propiconazole</li>
67
- <li>5. Thiophanate-methyl</li>
68
- <li>6. Copper Sulfate</li>
69
  </ul><br>
70
  <p class="note"><b>* * * IMPORTANT NOTE * * *</b></p>
71
  <p>Be sure to follow local regulations and guidelines for application</p>
72
 
73
  """
74
- elif predicted_label=='Mango Bacterial Canker':
75
  predicted_label = """
76
  <style>
77
  li{
@@ -103,22 +115,22 @@ def predict_disease(image_file, model, all_labels):
103
  }
104
 
105
  </style>
106
- <h3><center><b>Mango Bacterial Canker</b></center></h3>
107
  <h4>PESTICIDES TO BE USED:</h4>
108
  <ul>
109
- <li>1. Copper Hydroxide</li>
110
- <li>2. Copper Oxychloride</li>
111
- <li>3. Streptomycin</li>
112
- <li>4. oxytetracycline</li>
113
- <li>5. Neem oil</li>
114
- <li>6. Garlic oil</li>
115
  </ul>
116
  <p class="note"><b>* * * IMPORTANT NOTE * * *</b></p>
117
  <p>Be sure to follow local regulations and guidelines for application</p>
118
 
119
 
120
  """
121
- elif predicted_label=='Mango Cutting Weevil':
122
  predicted_label = """
123
  <style>
124
  li{
@@ -150,15 +162,15 @@ def predict_disease(image_file, model, all_labels):
150
  }
151
 
152
  </style>
153
- <h3><center><b>Mango Cutting Weevil</b></center></h3>
154
  <h4>PESTICIDES TO BE USED:</h4>
155
  <ul>
156
- <li>1. Imidacloprid</li>
157
- <li>2. Thiamethoxam</li>
158
- <li>3. Chlorpyrifos</li>
159
- <li>4. Lambda-cyhalothrin</li>
160
- <li>5. Fipronil</li>
161
- <li>6. Neem oil</li>
162
  </ul>
163
  <p class="note"><b>* * * IMPORTANT NOTE * * *</b></p>
164
  <p>Be sure to follow local regulations and guidelines for application</p>
@@ -166,7 +178,7 @@ def predict_disease(image_file, model, all_labels):
166
 
167
  """
168
 
169
- elif predicted_label=='Mango Die Back':
170
  predicted_label = """
171
  <style>
172
  li{
@@ -198,22 +210,21 @@ def predict_disease(image_file, model, all_labels):
198
  }
199
 
200
  </style>
201
- <h3><center><b>Mango Die Back</b></center></h3>
202
  <h4>PESTICIDES TO BE USED:</h4>
203
  <ul>
204
- <li>1. Carbendazim</li>
205
- <li>2. Mancozeb</li>
206
- <li>3. Azoxystrobin</li>
207
- <li>4. Triazole</li>
208
- <li>5. Potassium bicarbonate</li>
209
- <li>6. Sodium bicarbonate</li>
210
  </ul>
211
  <p class="note"><b>* * * IMPORTANT NOTE * * *</b></p>
212
  <p>Be sure to follow local regulations and guidelines for application</p>
213
 
214
 
215
  """
216
- elif predicted_label=='Mango Gall Midge':
217
  predicted_label = """
218
  <style>
219
  li{
@@ -245,22 +256,22 @@ def predict_disease(image_file, model, all_labels):
245
  }
246
 
247
  </style>
248
- <h3><center><b>Mango Gall Midge</b></center></h3>
249
  <h4>PESTICIDES TO BE USED:</h4>
250
  <ul>
251
  <li>1. Imidacloprid</li>
252
  <li>2. Thiamethoxam</li>
253
- <li>3. Chlorpyrifos</li>
254
- <li>4. Lambda-cyhalothrin</li>
255
- <li>5. Spinosad</li>
256
- <li>6. Pyrethrin</li>
257
  </ul>
258
  <p class="note"><b>* * * IMPORTANT NOTE * * *</b></p>
259
  <p>Be sure to follow local regulations and guidelines for application</p>
260
 
261
 
262
  """
263
- elif predicted_label=='Mango Powdery Mildew':
264
  predicted_label = """
265
  <style>
266
  li{
@@ -292,15 +303,14 @@ def predict_disease(image_file, model, all_labels):
292
  }
293
 
294
  </style>
295
- <h3><center><b>Mango Powdery Mildew</b></center></h3>
296
  <h4>PESTICIDES TO BE USED:</h4>
297
  <ul>
298
- <li>1. Sulfur</li>
299
- <li>2. Bicarbonates</li>
300
- <li>3. Myclobutanil</li>
301
- <li>4. Triadimefon</li>
302
  <li>5. Propiconazole</li>
303
- <li>6. Azoxystrobin</li>
304
  </ul>
305
  <p class="note"><b>* * * IMPORTANT NOTE * * *</b></p>
306
  <p>Be sure to follow local regulations and guidelines for application</p>
@@ -308,7 +318,7 @@ def predict_disease(image_file, model, all_labels):
308
 
309
  """
310
 
311
- elif predicted_label=='Mango Sooty Mould':
312
  predicted_label = """
313
  <style>
314
  li{
@@ -340,13 +350,106 @@ def predict_disease(image_file, model, all_labels):
340
  }
341
 
342
  </style>
343
- <h3><center><b>Mango Sooty Mould</b></center></h3>
344
  <h4>PESTICIDES TO BE USED:</h4>
345
  <ul>
346
- <li>1. Imidacloprid (Neonicotinoid)</li>
347
- <li>2. Thiamethoxam (Neonicotinoid)</li>
348
- <li>3. Bifenthrin (Pyrethroid)</li>
349
- <li>4. Lambda-cyhalothrin (Pyrethroid)</li>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
350
  <li>5. Insecticidal soap</li>
351
  <li>6. Horticultural oil</li>
352
  </ul>
@@ -355,9 +458,13 @@ def predict_disease(image_file, model, all_labels):
355
 
356
 
357
  """
358
- else:
359
- predicted_label = """<h3 align="center">Mango Healthy</h3><br><br>
 
 
360
  <center>No need use Pesticides</center>"""
 
 
361
 
362
  return predicted_label
363
 
@@ -368,14 +475,16 @@ def predict_disease(image_file, model, all_labels):
368
 
369
  # List of class labels
370
  all_labels = [
371
- 'Mango Anthracrose',
372
- 'Mango Bacterial Canker',
373
- 'Mango Cutting Weevil',
374
- 'Mango Die Back',
375
- 'Mango Gall Midge',
376
- 'Mango Healthy',
377
- 'Mango Powdery Mildew',
378
- 'Mango Sooty Mould'
 
 
379
  ]
380
 
381
  # Define the Gradio interface
@@ -387,9 +496,10 @@ gr_interface = gr.Interface(
387
  fn=gradio_predict, # Function to call for predictions
388
  inputs=gr.Image(type="filepath"), # Upload image as file path
389
  outputs="html", # Output will be the class label as text
390
- title="Plant Disease Predictor",
391
  description="Upload an image of a plant to predict the disease.",
392
  )
393
 
394
  # Launch the Gradio app
 
395
  gr_interface.launch(share=True)
 
1
+ !pip install tensorflow==2.11.0
2
  import gradio as gr
3
+
4
+ # Import tensorflow here
5
+ import tensorflow as tf
6
+
7
  from tensorflow.keras.utils import img_to_array,load_img
8
+ from tensorflow.keras.models import load_model # Use tensorflow.keras.models
9
  import numpy as np
10
 
11
  # Load the pre-trained model from the local path
12
+ model_path = '/content/tomato.h5'
13
+
14
+ # Define custom objects to handle potential incompatibilities
15
+ custom_objects = {'DepthwiseConv2D': tf.keras.layers.DepthwiseConv2D}
16
+
17
+ # Load the model with custom_objects
18
+ model = load_model(model_path, custom_objects=custom_objects)
19
+
20
+ # ... (rest of your code)
21
+
22
+ # ... (rest of your code) # Load the model here
23
 
24
  def predict_disease(image_file, model, all_labels):
25
+
26
  try:
27
  # Load and preprocess the image
28
  img = load_img(image_file, target_size=(224, 224)) # Use load_img from tensorflow.keras.utils
 
38
  predicted_label = all_labels[predicted_class]
39
 
40
  # Print the predicted label to the console
41
+
42
+ if predicted_label=='Tomato Yellow Leaf Curl Virus':
43
  predicted_label = """<style>
44
  li{
45
  font-size: 15px;
 
70
  }
71
 
72
  </style>
73
+ <h3><center><b>Tomato Yellow Leaf Curl Virus</b></center></h3>
74
  <h4>PESTICIDES TO BE USED:</h4>
75
  <ul>
76
+ <li>1. imidacloprid</li>
77
+ <li>2. thiamethoxam</li>
78
+ <li>3. Spinosad</li>
79
+ <li>4. Acetamiprid</li>
80
+
 
81
  </ul><br>
82
  <p class="note"><b>* * * IMPORTANT NOTE * * *</b></p>
83
  <p>Be sure to follow local regulations and guidelines for application</p>
84
 
85
  """
86
+ elif predicted_label=='Tomato Target Spot':
87
  predicted_label = """
88
  <style>
89
  li{
 
115
  }
116
 
117
  </style>
118
+ <h3><center><b>Tomato Target Spot</b></center></h3>
119
  <h4>PESTICIDES TO BE USED:</h4>
120
  <ul>
121
+ <li>1. Azoxystrobin</li>
122
+ <li>2. Boscalid</li>
123
+ <li>3. Mancozeb</li>
124
+ <li>4. Chlorothalonil</li>
125
+ <li>5. Propiconazole</li>
126
+
127
  </ul>
128
  <p class="note"><b>* * * IMPORTANT NOTE * * *</b></p>
129
  <p>Be sure to follow local regulations and guidelines for application</p>
130
 
131
 
132
  """
133
+ elif predicted_label=='Tomato Spider mites':
134
  predicted_label = """
135
  <style>
136
  li{
 
162
  }
163
 
164
  </style>
165
+ <h3><center><b>Tomato Spider mites</b></center></h3>
166
  <h4>PESTICIDES TO BE USED:</h4>
167
  <ul>
168
+ <li>1. Abamectin</li>
169
+ <li>2. Spiromesifen</li>
170
+ <li>3. Miticides</li>
171
+ <li>4. insecticidal soap</li>
172
+
173
+ <li>5. Neem oil</li>
174
  </ul>
175
  <p class="note"><b>* * * IMPORTANT NOTE * * *</b></p>
176
  <p>Be sure to follow local regulations and guidelines for application</p>
 
178
 
179
  """
180
 
181
+ elif predicted_label=='Tomato Septoria leaf spot':
182
  predicted_label = """
183
  <style>
184
  li{
 
210
  }
211
 
212
  </style>
213
+ <h3><center><b>Tomato Septoria leaf spot</b></center></h3>
214
  <h4>PESTICIDES TO BE USED:</h4>
215
  <ul>
216
+ <li>1. Azoxystrobin</li>
217
+ <li>2. Boscalid</li>
218
+ <li>3. Mancozeb</li>
219
+ <li>4. Chlorothalonil</li>
220
+ <li>5. Propiconazole</li>
 
221
  </ul>
222
  <p class="note"><b>* * * IMPORTANT NOTE * * *</b></p>
223
  <p>Be sure to follow local regulations and guidelines for application</p>
224
 
225
 
226
  """
227
+ elif predicted_label=='Tomato Mosaic virus':
228
  predicted_label = """
229
  <style>
230
  li{
 
256
  }
257
 
258
  </style>
259
+ <h3><center><b>Tomato Mosaic virus</b></center></h3>
260
  <h4>PESTICIDES TO BE USED:</h4>
261
  <ul>
262
  <li>1. Imidacloprid</li>
263
  <li>2. Thiamethoxam</li>
264
+ <li>3. Acetamiprid</li>
265
+ <li>4. Dinotefuran</li>
266
+ <li>5. Pyrethrin</li>
267
+
268
  </ul>
269
  <p class="note"><b>* * * IMPORTANT NOTE * * *</b></p>
270
  <p>Be sure to follow local regulations and guidelines for application</p>
271
 
272
 
273
  """
274
+ elif predicted_label=='Tomato Leaf Mold':
275
  predicted_label = """
276
  <style>
277
  li{
 
303
  }
304
 
305
  </style>
306
+ <h3><center><b>Tomato Leaf Mold</b></center></h3>
307
  <h4>PESTICIDES TO BE USED:</h4>
308
  <ul>
309
+ <li>1. Azoxystrobin</li>
310
+ <li>2. Boscalid</li>
311
+ <li>3. Mancozeb</li>
312
+ <li>4. Chlorothalonil</li>
313
  <li>5. Propiconazole</li>
 
314
  </ul>
315
  <p class="note"><b>* * * IMPORTANT NOTE * * *</b></p>
316
  <p>Be sure to follow local regulations and guidelines for application</p>
 
318
 
319
  """
320
 
321
+ elif predicted_label=='Tomato Late blight':
322
  predicted_label = """
323
  <style>
324
  li{
 
350
  }
351
 
352
  </style>
353
+ <h3><center><b>Tomato blight</b></center></h3>
354
  <h4>PESTICIDES TO BE USED:</h4>
355
  <ul>
356
+ <li>1. metalaxl</li>
357
+ <li>2. Chlorothalonil</li>
358
+ <li>3. Mancozeb</li>
359
+ <li>4. Copper oxychloride</li>
360
+ <li>5. Azoxystrobin</li>
361
+
362
+ </ul>
363
+ <p class="note"><b>* * * IMPORTANT NOTE * * *</b></p>
364
+ <p>Be sure to follow local regulations and guidelines for application</p>
365
+
366
+
367
+ """
368
+ elif predicted_label=='Tomato Early blight':
369
+ predicted_label = """
370
+ <style>
371
+ li{
372
+ font-size: 15px;
373
+ margin-left: 90px;
374
+ margin-top: 15px;
375
+ margin-bottom: 15px;
376
+ }
377
+ h4{
378
+ font-size: 17px;
379
+ margin-top: 15px;
380
+ }
381
+ h4:hover{
382
+ cursor: pointer;
383
+ }
384
+
385
+ h3:hover{
386
+ cursor: pointer;
387
+ color: blue;
388
+ transform: scale(1.3);
389
+ }
390
+ .note{
391
+ text-align: center;
392
+ font-size: 16px;
393
+ }
394
+ p{
395
+ font-size: 13px;
396
+ text-align: center;
397
+ }
398
+
399
+ </style>
400
+ <h3><center><b>Tomato blight</b></center></h3>
401
+ <h4>PESTICIDES TO BE USED:</h4>
402
+ <ul>
403
+ <li>1. Azoxystrobin</li>
404
+ <li>2. Boscalid</li>
405
+ <li>3. Mancozeb</li>
406
+ <li>4. Chlorothalonil</li>
407
+ <li>5. Propiconazole</li>
408
+ </ul>
409
+ <p class="note"><b>* * * IMPORTANT NOTE * * *</b></p>
410
+ <p>Be sure to follow local regulations and guidelines for application</p>
411
+
412
+
413
+ """
414
+ elif predicted_label=='Tomato Bacterial spot':
415
+ predicted_label = """
416
+ <style>
417
+ li{
418
+ font-size: 15px;
419
+ margin-left: 90px;
420
+ margin-top: 15px;
421
+ margin-bottom: 15px;
422
+ }
423
+ h4{
424
+ font-size: 17px;
425
+ margin-top: 15px;
426
+ }
427
+ h4:hover{
428
+ cursor: pointer;
429
+ }
430
+
431
+ h3:hover{
432
+ cursor: pointer;
433
+ color: blue;
434
+ transform: scale(1.3);
435
+ }
436
+ .note{
437
+ text-align: center;
438
+ font-size: 16px;
439
+ }
440
+ p{
441
+ font-size: 13px;
442
+ text-align: center;
443
+ }
444
+
445
+ </style>
446
+ <h3><center><b>Tomato Bacterial spot</b></center></h3>
447
+ <h4>PESTICIDES TO BE USED:</h4>
448
+ <ul>
449
+ <li>1. Copper oxychloride</li>
450
+ <li>2. Streptomycin</li>
451
+ <li>3. tetracycline</li>
452
+ <li>4. Oxytetracline(Terramycin)</li>
453
  <li>5. Insecticidal soap</li>
454
  <li>6. Horticultural oil</li>
455
  </ul>
 
458
 
459
 
460
  """
461
+
462
+ elif predicted_label=='Tomato Healthy':
463
+
464
+ predicted_label = """<h3 align="center">Tomato Healthy</h3><br><br>
465
  <center>No need use Pesticides</center>"""
466
+ else:
467
+ predict_label="choose correct image"
468
 
469
  return predicted_label
470
 
 
475
 
476
  # List of class labels
477
  all_labels = [
478
+ 'Tomato Yellow Leaf Curl Virus',
479
+ 'Tomato Target Spot',
480
+ 'Tomato Spider mites',
481
+ 'Tomato Septoria leaf spot',
482
+ 'Tomato Mosaic virus',
483
+ 'Tomato Leaf Mold',
484
+ 'Tomato Late blight',
485
+ 'Tomato Healthy',
486
+ 'Tomato Early blight',
487
+ 'Tomato Bacterial spot'
488
  ]
489
 
490
  # Define the Gradio interface
 
496
  fn=gradio_predict, # Function to call for predictions
497
  inputs=gr.Image(type="filepath"), # Upload image as file path
498
  outputs="html", # Output will be the class label as text
499
+ title="Tomato Disease Predictor",
500
  description="Upload an image of a plant to predict the disease.",
501
  )
502
 
503
  # Launch the Gradio app
504
+
505
  gr_interface.launch(share=True)