Spaces:
Running
Running
File size: 16,195 Bytes
b84746b 4ddf4f2 b84746b 4ddf4f2 55b9615 f572b7e 4ddf4f2 1378b3b f572b7e b84746b 65a487f c2e746b b84746b 4ddf4f2 c2e746b f572b7e b84746b c2e746b b84746b 65a487f b84746b 4ddf4f2 b84746b 1378b3b b84746b 1378b3b b84746b 1378b3b c3804bb 1378b3b b84746b 4dd02a3 c2e746b b84746b f572b7e 55b9615 f572b7e 4ddf4f2 0196abc 4ddf4f2 b84746b 4ddf4f2 b84746b 4ddf4f2 b84746b 4ddf4f2 b84746b 4ddf4f2 55b9615 b84746b 4ddf4f2 b84746b 4ddf4f2 b84746b 65a487f b84746b 65a487f b84746b 4ddf4f2 b84746b 4ddf4f2 b84746b 55b9615 b84746b 55b9615 b84746b 55b9615 c2e746b b84746b 55b9615 1378b3b b84746b 1378b3b 55b9615 b84746b c2e746b ca7d12d b84746b ca7d12d b84746b 1378b3b b84746b 4ddf4f2 b84746b 1378b3b b84746b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 |
# import os
# import time
# from fastapi import FastAPI,Request
# from fastapi.responses import HTMLResponse
# from fastapi.staticfiles import StaticFiles
# from llama_index.core import StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader, ChatPromptTemplate, Settings
# from llama_index.embeddings.huggingface import HuggingFaceEmbedding
# from pydantic import BaseModel
# from fastapi.responses import JSONResponse
# import uuid # for generating unique IDs
# import datetime
# from fastapi.middleware.cors import CORSMiddleware
# from fastapi.templating import Jinja2Templates
# from huggingface_hub import InferenceClient
# import json
# import re
# from gradio_client import Client
# from simple_salesforce import Salesforce, SalesforceLogin
# from llama_index.llms.huggingface import HuggingFaceLLM
# # from llama_index.llms.huggingface import HuggingFaceInferenceAPI
# # Define Pydantic model for incoming request body
# class MessageRequest(BaseModel):
# message: str
# repo_id = "meta-llama/Meta-Llama-3-8B-Instruct"
# llm_client = InferenceClient(
# model=repo_id,
# token=os.getenv("HF_TOKEN"),
# )
# os.environ["HF_TOKEN"] = os.getenv("HF_TOKEN")
# username = os.getenv("username")
# password = os.getenv("password")
# security_token = os.getenv("security_token")
# domain = os.getenv("domain")# Using sandbox environment
# session_id, sf_instance = SalesforceLogin(username=username, password=password, security_token=security_token, domain=domain)
# # Create Salesforce object
# sf = Salesforce(instance=sf_instance, session_id=session_id)
# app = FastAPI()
# @app.middleware("http")
# async def add_security_headers(request: Request, call_next):
# response = await call_next(request)
# response.headers["Content-Security-Policy"] = "frame-ancestors *; frame-src *; object-src *;"
# response.headers["X-Frame-Options"] = "ALLOWALL"
# return response
# # Allow CORS requests from any domain
# app.add_middleware(
# CORSMiddleware,
# allow_origins=["*"],
# allow_credentials=True,
# allow_methods=["*"],
# allow_headers=["*"],
# )
# @app.get("/favicon.ico")
# async def favicon():
# return HTMLResponse("") # or serve a real favicon if you have one
# app.mount("/static", StaticFiles(directory="static"), name="static")
# templates = Jinja2Templates(directory="static")
# # Configure Llama index settings
# Settings.llm = HuggingFaceLLM(
# model_name="meta-llama/Meta-Llama-3-8B-Instruct",
# tokenizer_name="meta-llama/Meta-Llama-3-8B-Instruct",
# context_window=3000,
# token=os.getenv("HF_TOKEN"),
# max_new_tokens=512,
# generate_kwargs={"temperature": 0.1},
# )
# Settings.embed_model = HuggingFaceEmbedding(
# model_name="BAAI/bge-small-en-v1.5"
# )
# PERSIST_DIR = "db"
# PDF_DIRECTORY = 'data'
# # Ensure directories exist
# os.makedirs(PDF_DIRECTORY, exist_ok=True)
# os.makedirs(PERSIST_DIR, exist_ok=True)
# chat_history = []
# current_chat_history = []
# def data_ingestion_from_directory():
# documents = SimpleDirectoryReader(PDF_DIRECTORY).load_data()
# storage_context = StorageContext.from_defaults()
# index = VectorStoreIndex.from_documents(documents)
# index.storage_context.persist(persist_dir=PERSIST_DIR)
# def initialize():
# start_time = time.time()
# data_ingestion_from_directory() # Process PDF ingestion at startup
# print(f"Data ingestion time: {time.time() - start_time} seconds")
# def split_name(full_name):
# # Split the name by spaces
# words = full_name.strip().split()
# # Logic for determining first name and last name
# if len(words) == 1:
# first_name = ''
# last_name = words[0]
# elif len(words) == 2:
# first_name = words[0]
# last_name = words[1]
# else:
# first_name = words[0]
# last_name = ' '.join(words[1:])
# return first_name, last_name
# initialize() # Run initialization tasks
# def handle_query(query):
# chat_text_qa_msgs = [
# (
# "user",
# """
# You are the Clara Redfernstech chatbot. Your goal is to provide accurate, professional, and helpful answers to user queries based on the company's data. Always ensure your responses are clear and concise. Give response within 10-15 words only
# {context_str}
# Question:
# {query_str}
# """
# )
# ]
# text_qa_template = ChatPromptTemplate.from_messages(chat_text_qa_msgs)
# storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR)
# index = load_index_from_storage(storage_context)
# context_str = ""
# for past_query, response in reversed(current_chat_history):
# if past_query.strip():
# context_str += f"User asked: '{past_query}'\nBot answered: '{response}'\n"
# query_engine = index.as_query_engine(text_qa_template=text_qa_template, context_str=context_str)
# answer = query_engine.query(query)
# if hasattr(answer, 'response'):
# response=answer.response
# elif isinstance(answer, dict) and 'response' in answer:
# response =answer['response']
# else:
# response ="Sorry, I couldn't find an answer."
# current_chat_history.append((query, response))
# return response
# @app.get("/ch/{id}", response_class=HTMLResponse)
# async def load_chat(request: Request, id: str):
# return templates.TemplateResponse("index.html", {"request": request, "user_id": id})
# # Route to save chat history
# @app.post("/hist/")
# async def save_chat_history(history: dict):
# # Check if 'userId' is present in the incoming dictionary
# user_id = history.get('userId')
# print(user_id)
# # Ensure user_id is defined before proceeding
# if user_id is None:
# return {"error": "userId is required"}, 400
# # Construct the chat history string
# hist = ''.join([f"'{entry['sender']}: {entry['message']}'\n" for entry in history['history']])
# hist = "You are a Redfernstech summarize model. Your aim is to use this conversation to identify user interests solely based on that conversation: " + hist
# print(hist)
# # Get the summarized result from the client model
# result = hist
# try:
# sf.Lead.update(user_id, {'Description': result})
# except Exception as e:
# return {"error": f"Failed to update lead: {str(e)}"}, 500
# return {"summary": result, "message": "Chat history saved"}
# @app.post("/webhook")
# async def receive_form_data(request: Request):
# form_data = await request.json()
# # Log in to Salesforce
# first_name, last_name = split_name(form_data['name'])
# data = {
# 'FirstName': first_name,
# 'LastName': last_name,
# 'Description': 'hii', # Static description
# 'Company': form_data['company'], # Assuming company is available in form_data
# 'Phone': form_data['phone'].strip(), # Phone from form data
# 'Email': form_data['email'], # Email from form data
# }
# a=sf.Lead.create(data)
# # Generate a unique ID (for tracking user)
# unique_id = a['id']
# # Here you can do something with form_data like saving it to a database
# print("Received form data:", form_data)
# # Send back the unique id to the frontend
# return JSONResponse({"id": unique_id})
# @app.post("/chat/")
# async def chat(request: MessageRequest):
# message = request.message # Access the message from the request body
# response = handle_query(message) # Process the message
# message_data = {
# "sender": "User",
# "message": message,
# "response": response,
# "timestamp": datetime.datetime.now().isoformat()
# }
# chat_history.append(message_data)
# return {"response": response}
# @app.get("/")
# def read_root():
# return {"message": "Welcome to the API"}
import os
import time
from fastapi import FastAPI, Request, HTTPException
from fastapi.responses import HTMLResponse, JSONResponse
from fastapi.staticfiles import StaticFiles
from llama_index.core import StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader, ChatPromptTemplate, Settings
from llama_index.core.base.llms.types import ChatMessage, MessageRole
from llama_index.core.llms import LLM
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from pydantic import BaseModel
from fastapi.middleware.cors import CORSMiddleware
from fastapi.templating import Jinja2Templates
from huggingface_hub import InferenceClient
import datetime
from simple_salesforce import Salesforce, SalesforceLogin
# Pydantic model for request body
class MessageRequest(BaseModel):
message: str
# Custom LLM class for Hugging Face Inference API
class HuggingFaceInferenceLLM(LLM):
def __init__(self, model_name: str, token: str):
super().__init__()
self.client = InferenceClient(model=model_name, token=token)
self.model_name = model_name
def chat(self, messages: list[ChatMessage], **kwargs) -> str:
prompt = ""
for msg in messages:
role = "user" if msg.role == MessageRole.USER else "assistant"
prompt += f"{role}: {msg.content}\n"
try:
response = self.client.text_generation(
prompt,
max_new_tokens=512,
temperature=0.1,
do_sample=True,
stop_sequences=["\n"]
)
return response
except Exception as e:
return f"Error in API call: {str(e)}"
async def achat(self, messages: list[ChatMessage], **kwargs) -> str:
return self.chat(messages, **kwargs)
@property
def metadata(self):
return {
"model_name": self.model_name,
"context_window": 3000,
"max_new_tokens": 512
}
# Validate environment variables
required_env_vars = ["HF_TOKEN", "username", "password", "security_token", "domain"]
for var in required_env_vars:
if not os.getenv(var):
raise EnvironmentError(f"Missing required environment variable: {var}")
# Salesforce configuration
try:
session_id, sf_instance = SalesforceLogin(
username=os.getenv("username"),
password=os.getenv("password"),
security_token=os.getenv("security_token"),
domain=os.getenv("domain")
)
sf = Salesforce(instance=sf_instance, session_id=session_id)
except Exception as e:
raise Exception(f"Failed to initialize Salesforce: {str(e)}")
# FastAPI setup
app = FastAPI()
# Security headers middleware
@app.middleware("http")
async def add_security_headers(request: Request, call_next):
response = await call_next(request)
response.headers.update({
"Content-Security-Policy": "default-src 'self'; frame-ancestors 'self';",
"X-Frame-Options": "DENY",
"X-Content-Type-Options": "nosniff",
"Referrer-Policy": "strict-origin-when-cross-origin"
})
return response
# CORS configuration
app.add_middleware(
CORSMiddleware,
allow_origins=["*"], # Specify allowed origins in production
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Static files and templates
app.mount("/static", StaticFiles(directory="static"), name="static")
templates = Jinja2Templates(directory="static")
# LlamaIndex configuration
Settings.llm = HuggingFaceInferenceLLM(
model_name="meta-llama/Meta-Llama-3-8B-Instruct",
token=os.getenv("HF_TOKEN")
)
Settings.embed_model = HuggingFaceEmbedding(
model_name="BAAI/bge-small-en-v1.5"
)
# Directory constants
PERSIST_DIR = "db"
PDF_DIRECTORY = "data"
# Initialize directories
os.makedirs(PDF_DIRECTORY, exist_ok=True)
os.makedirs(PERSIST_DIR, exist_ok=True)
# Chat history storage
chat_history = []
current_chat_history = []
def data_ingestion_from_directory():
try:
documents = SimpleDirectoryReader(PDF_DIRECTORY).load_data()
storage_context = StorageContext.from_defaults()
index = VectorStoreIndex.from_documents(documents)
index.storage_context.persist(persist_dir=PERSIST_DIR)
except Exception as e:
raise Exception(f"Data ingestion failed: {str(e)}")
def initialize():
start_time = time.time()
data_ingestion_from_directory()
print(f"Data ingestion completed in {time.time() - start_time:.2f} seconds")
def split_name(full_name: str) -> tuple:
words = full_name.strip().split()
if len(words) == 1:
return "", words[0]
elif len(words) == 2:
return words[0], words[1]
return words[0], " ".join(words[1:])
# Run initialization
initialize()
def handle_query(query: str) -> str:
chat_text_qa_msgs = [
(
"user",
"""
You are the Clara Redfernstech chatbot. Provide accurate, professional answers in 10-15 words.
{context_str}
Question: {query_str}
"""
)
]
text_qa_template = ChatPromptTemplate.from_messages(chat_text_qa_msgs)
try:
storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR)
index = load_index_from_storage(storage_context)
context_str = ""
for past_query, response in reversed(current_chat_history[-5:]): # Limit context to last 5 interactions
if past_query.strip():
context_str += f"User: '{past_query}'\nBot: '{response}'\n"
query_engine = index.as_query_engine(text_qa_template=text_qa_template)
answer = query_engine.query(query)
response = getattr(answer, 'response', answer.get('response', "Sorry, I couldn't find an answer."))
current_chat_history.append((query, response))
return response
except Exception as e:
return f"Error processing query: {str(e)}"
@app.get("/favicon.ico")
async def favicon():
return HTMLResponse(status_code=204)
@app.get("/ch/{id}", response_class=HTMLResponse)
async def load_chat(request: Request, id: str):
return templates.TemplateResponse("index.html", {"request": request, "user_id": id})
@app.post("/hist/")
async def save_chat_history(history: dict):
user_id = history.get('userId')
if not user_id:
raise HTTPException(status_code=400, detail="userId is required")
try:
hist = ''.join([f"'{entry['sender']}: {entry['message']}'\n" for entry in history['history']])
summary = f"Conversation summary for user interest analysis:\n{hist}"
sf.Lead.update(user_id, {'Description': summary})
return {"summary": summary, "message": "Chat history saved"}
except Exception as e:
raise HTTPException(status_code=500, detail=f"Failed to update lead: {str(e)}")
@app.post("/webhook")
async def receive_form_data(request: Request):
try:
form_data = await request.json()
first_name, last_name = split_name(form_data.get('name', ''))
data = {
'FirstName': first_name,
'LastName': last_name,
'Description': 'New lead from webhook',
'Company': form_data.get('company', 'Unknown'),
'Phone': form_data.get('phone', '').strip(),
'Email': form_data.get('email', ''),
}
result = sf.Lead.create(data)
return JSONResponse({"id": result['id']})
except Exception as e:
raise HTTPException(status_code=500, detail=f"Failed to process webhook: {str(e)}")
@app.post("/chat/")
async def chat(request: MessageRequest):
try:
response = handle_query(request.message)
message_data = {
"sender": "User",
"message": request.message,
"response": response,
"timestamp": datetime.datetime.now().isoformat()
}
chat_history.append(message_data)
return {"response": response}
except Exception as e:
raise HTTPException(status_code=500, detail=f"Chat processing failed: {str(e)}")
@app.get("/")
def read_root():
return {"message": "Welcome to the Redfernstech API"} |