File size: 15,000 Bytes
b84746b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ddf4f2
 
b84746b
 
4ddf4f2
55b9615
4ddf4f2
42726ec
4ddf4f2
1378b3b
 
b84746b
65a487f
c2e746b
b84746b
4ddf4f2
 
c2e746b
b84746b
 
 
 
 
c2e746b
b84746b
 
 
 
 
 
 
 
 
 
 
65a487f
b84746b
4ddf4f2
 
b84746b
1378b3b
 
 
b84746b
 
 
 
 
 
1378b3b
 
b84746b
1378b3b
 
c3804bb
1378b3b
 
 
 
 
b84746b
4dd02a3
c2e746b
b84746b
 
c3804bb
55b9615
c2e746b
55b9615
c3804bb
4ddf4f2
0196abc
4ddf4f2
 
 
 
b84746b
4ddf4f2
b84746b
4ddf4f2
b84746b
4ddf4f2
 
b84746b
 
4ddf4f2
55b9615
b84746b
4ddf4f2
b84746b
 
 
 
 
 
 
4ddf4f2
 
 
b84746b
 
 
 
65a487f
 
b84746b
65a487f
b84746b
 
4ddf4f2
b84746b
 
4ddf4f2
b84746b
55b9615
 
 
 
b84746b
55b9615
b84746b
55b9615
 
 
 
c2e746b
b84746b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55b9615
1378b3b
 
 
b84746b
1378b3b
 
55b9615
b84746b
 
c2e746b
ca7d12d
b84746b
 
 
 
 
ca7d12d
b84746b
 
1378b3b
 
b84746b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ddf4f2
 
 
b84746b
 
 
 
 
 
 
 
 
 
 
 
 
1378b3b
 
b84746b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
# import os
# import time
# from fastapi import FastAPI,Request
# from fastapi.responses import HTMLResponse
# from fastapi.staticfiles import StaticFiles
# from llama_index.core import StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader, ChatPromptTemplate, Settings
# from llama_index.embeddings.huggingface import HuggingFaceEmbedding
# from pydantic import BaseModel
# from fastapi.responses import JSONResponse
# import uuid  # for generating unique IDs
# import datetime
# from fastapi.middleware.cors import CORSMiddleware
# from fastapi.templating import Jinja2Templates
# from huggingface_hub import InferenceClient
# import json
# import re
# from gradio_client import Client
# from simple_salesforce import Salesforce, SalesforceLogin
# from llama_index.llms.huggingface import HuggingFaceLLM
# # from llama_index.llms.huggingface import HuggingFaceInferenceAPI


# # Define Pydantic model for incoming request body
# class MessageRequest(BaseModel):
#     message: str
# repo_id = "meta-llama/Meta-Llama-3-8B-Instruct"
# llm_client = InferenceClient(
#     model=repo_id,
#     token=os.getenv("HF_TOKEN"),
# )


# os.environ["HF_TOKEN"] = os.getenv("HF_TOKEN")
# username = os.getenv("username")
# password = os.getenv("password")
# security_token = os.getenv("security_token")
# domain =  os.getenv("domain")# Using sandbox environment
# session_id, sf_instance = SalesforceLogin(username=username, password=password, security_token=security_token, domain=domain)

#     # Create Salesforce object
# sf = Salesforce(instance=sf_instance, session_id=session_id)

# app = FastAPI()


# @app.middleware("http")
# async def add_security_headers(request: Request, call_next):
#     response = await call_next(request)
#     response.headers["Content-Security-Policy"] = "frame-ancestors *; frame-src *; object-src *;"
#     response.headers["X-Frame-Options"] = "ALLOWALL"
#     return response


# # Allow CORS requests from any domain
# app.add_middleware(
#     CORSMiddleware,
#     allow_origins=["*"],
#     allow_credentials=True,
#     allow_methods=["*"],
#     allow_headers=["*"],
# )




# @app.get("/favicon.ico")
# async def favicon():
#     return HTMLResponse("")  # or serve a real favicon if you have one


# app.mount("/static", StaticFiles(directory="static"), name="static")

# templates = Jinja2Templates(directory="static")
# # Configure Llama index settings
# Settings.llm = HuggingFaceLLM(
#     model_name="meta-llama/Meta-Llama-3-8B-Instruct",
#     tokenizer_name="meta-llama/Meta-Llama-3-8B-Instruct",
#     context_window=3000,
#     token=os.getenv("HF_TOKEN"),
#     max_new_tokens=512,
#     generate_kwargs={"temperature": 0.1},
# )

# Settings.embed_model = HuggingFaceEmbedding(
#     model_name="BAAI/bge-small-en-v1.5"
# )

# PERSIST_DIR = "db"
# PDF_DIRECTORY = 'data'

# # Ensure directories exist
# os.makedirs(PDF_DIRECTORY, exist_ok=True)
# os.makedirs(PERSIST_DIR, exist_ok=True)
# chat_history = []
# current_chat_history = []
# def data_ingestion_from_directory():
#     documents = SimpleDirectoryReader(PDF_DIRECTORY).load_data()
#     storage_context = StorageContext.from_defaults()
#     index = VectorStoreIndex.from_documents(documents)
#     index.storage_context.persist(persist_dir=PERSIST_DIR)

# def initialize():
#     start_time = time.time()
#     data_ingestion_from_directory()  # Process PDF ingestion at startup
#     print(f"Data ingestion time: {time.time() - start_time} seconds")
# def split_name(full_name):
#     # Split the name by spaces
#     words = full_name.strip().split()
    
#     # Logic for determining first name and last name
#     if len(words) == 1:
#         first_name = ''
#         last_name = words[0]
#     elif len(words) == 2:
#         first_name = words[0]
#         last_name = words[1]
#     else:
#         first_name = words[0]
#         last_name = ' '.join(words[1:])
    
#     return first_name, last_name

# initialize()  # Run initialization tasks


# def handle_query(query):
#     chat_text_qa_msgs = [
#         (
#             "user",
#             """
#             You are the Clara Redfernstech chatbot. Your goal is to provide accurate, professional, and helpful answers to user queries based on the company's data. Always ensure your responses are clear and concise. Give response within 10-15 words only       
#             {context_str}
#             Question:
#             {query_str}
#             """
#         )
#     ]
#     text_qa_template = ChatPromptTemplate.from_messages(chat_text_qa_msgs)
    
#     storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR)
#     index = load_index_from_storage(storage_context)
#     context_str = ""
#     for past_query, response in reversed(current_chat_history):
#         if past_query.strip():
#             context_str += f"User asked: '{past_query}'\nBot answered: '{response}'\n"

    
#     query_engine = index.as_query_engine(text_qa_template=text_qa_template, context_str=context_str)
#     answer = query_engine.query(query)

#     if hasattr(answer, 'response'):
#         response=answer.response
#     elif isinstance(answer, dict) and 'response' in answer:
#         response =answer['response']
#     else:
#         response ="Sorry, I couldn't find an answer."
#     current_chat_history.append((query, response))
#     return response
# @app.get("/ch/{id}", response_class=HTMLResponse)
# async def load_chat(request: Request, id: str):
#     return templates.TemplateResponse("index.html", {"request": request, "user_id": id})
# # Route to save chat history
# @app.post("/hist/")
# async def save_chat_history(history: dict):
#     # Check if 'userId' is present in the incoming dictionary
#     user_id = history.get('userId')
#     print(user_id)

#     # Ensure user_id is defined before proceeding
#     if user_id is None:
#         return {"error": "userId is required"}, 400

#     # Construct the chat history string
#     hist = ''.join([f"'{entry['sender']}: {entry['message']}'\n" for entry in history['history']])
#     hist = "You are a Redfernstech summarize model. Your aim is to use this conversation to identify user interests solely based on that conversation: " + hist
#     print(hist)

#     # Get the summarized result from the client model
#     result = hist

#     try:
#         sf.Lead.update(user_id, {'Description': result})
#     except Exception as e:
#         return {"error": f"Failed to update lead: {str(e)}"}, 500
    
#     return {"summary": result, "message": "Chat history saved"}
# @app.post("/webhook")
# async def receive_form_data(request: Request):
#     form_data = await request.json()
#     # Log in to Salesforce
#     first_name, last_name = split_name(form_data['name'])
#     data = {
#     'FirstName': first_name,
#     'LastName': last_name,
#     'Description': 'hii',  # Static description
#     'Company': form_data['company'],  # Assuming company is available in form_data
#     'Phone': form_data['phone'].strip(),  # Phone from form data
#     'Email': form_data['email'],  # Email from form data
#     }
#     a=sf.Lead.create(data)
#     # Generate a unique ID (for tracking user)
#     unique_id = a['id']
    
#     # Here you can do something with form_data like saving it to a database
#     print("Received form data:", form_data)
    
#     # Send back the unique id to the frontend
#     return JSONResponse({"id": unique_id})

# @app.post("/chat/")
# async def chat(request: MessageRequest):
#     message = request.message  # Access the message from the request body
#     response = handle_query(message)  # Process the message
#     message_data = {
#         "sender": "User",
#         "message": message,
#         "response": response,
#         "timestamp": datetime.datetime.now().isoformat()
#     }
#     chat_history.append(message_data)
#     return {"response": response}
# @app.get("/")
# def read_root():
#     return {"message": "Welcome to the API"}

import os
import time
from fastapi import FastAPI, Request, HTTPException
from fastapi.responses import HTMLResponse, JSONResponse
from fastapi.staticfiles import StaticFiles
from llama_index.core import StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader, ChatPromptTemplate, Settings
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from llama_index.llms.huggingface import HuggingFaceInferenceAPI
from pydantic import BaseModel
from fastapi.middleware.cors import CORSMiddleware
from fastapi.templating import Jinja2Templates
import datetime
from simple_salesforce import Salesforce, SalesforceLogin

# Pydantic model for request body
class MessageRequest(BaseModel):
    message: str

# Validate environment variables
required_env_vars = ["HF_TOKEN", "username", "password", "security_token", "domain"]
for var in required_env_vars:
    if not os.getenv(var):
        raise EnvironmentError(f"Missing required environment variable: {var}")

# Salesforce configuration
try:
    session_id, sf_instance = SalesforceLogin(
        username=os.getenv("username"),
        password=os.getenv("password"),
        security_token=os.getenv("security_token"),
        domain=os.getenv("domain")
    )
    sf = Salesforce(instance=sf_instance, session_id=session_id)
except Exception as e:
    raise Exception(f"Failed to initialize Salesforce: {str(e)}")

# FastAPI setup
app = FastAPI()

# Security headers middleware
@app.middleware("http")
async def add_security_headers(request: Request, call_next):
    response = await call_next(request)
    response.headers.update({
        "Content-Security-Policy": "default-src 'self'; frame-ancestors 'self';",
        "X-Frame-Options": "DENY",
        "X-Content-Type-Options": "nosniff",
        "Referrer-Policy": "strict-origin-when-cross-origin"
    })
    return response

# CORS configuration
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],  # Specify allowed origins in production
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

# Static files and templates
app.mount("/static", StaticFiles(directory="static"), name="static")
templates = Jinja2Templates(directory="static")

# LlamaIndex configuration
Settings.llm = HuggingFaceInferenceAPI(
    model_name="meta-llama/Meta-Llama-3-8B-Instruct",
    token=os.getenv("HF_TOKEN"),
    max_new_tokens=512,
    temperature=0.1
)

Settings.embed_model = HuggingFaceEmbedding(
    model_name="BAAI/bge-small-en-v1.5"
)

# Directory constants
PERSIST_DIR = "db"
PDF_DIRECTORY = "data"

# Initialize directories
os.makedirs(PDF_DIRECTORY, exist_ok=True)
os.makedirs(PERSIST_DIR, exist_ok=True)

# Chat history storage
chat_history = []
current_chat_history = []

def data_ingestion_from_directory():
    try:
        documents = SimpleDirectoryReader(PDF_DIRECTORY).load_data()
        storage_context = StorageContext.from_defaults()
        index = VectorStoreIndex.from_documents(documents)
        index.storage_context.persist(persist_dir=PERSIST_DIR)
    except Exception as e:
        raise Exception(f"Data ingestion failed: {str(e)}")

def initialize():
    start_time = time.time()
    data_ingestion_from_directory()
    print(f"Data ingestion completed in {time.time() - start_time:.2f} seconds")

def split_name(full_name: str) -> tuple:
    words = full_name.strip().split()
    if len(words) == 1:
        return "", words[0]
    elif len(words) == 2:
        return words[0], words[1]
    return words[0], " ".join(words[1:])

# Run initialization
initialize()

def handle_query(query: str) -> str:
    chat_text_qa_msgs = [
        (
            "user",
            """
            You are the Clara Redfernstech chatbot. Provide accurate, professional answers in 10-15 words.
            {context_str}
            Question: {query_str}
            """
        )
    ]
    text_qa_template = ChatPromptTemplate.from_messages(chat_text_qa_msgs)
    
    try:
        storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR)
        index = load_index_from_storage(storage_context)
        
        context_str = ""
        for past_query, response in reversed(current_chat_history[-5:]):  # Limit context to last 5 interactions
            if past_query.strip():
                context_str += f"User: '{past_query}'\nBot: '{response}'\n"
        
        query_engine = index.as_query_engine(text_qa_template=text_qa_template)
        answer = query_engine.query(query)
        
        response = getattr(answer, 'response', answer.get('response', "Sorry, I couldn't find an answer."))
        current_chat_history.append((query, response))
        return response
    except Exception as e:
        return f"Error processing query: {str(e)}"

@app.get("/favicon.ico")
async def favicon():
    return HTMLResponse(status_code=204)

@app.get("/ch/{id}", response_class=HTMLResponse)
async def load_chat(request: Request, id: str):
    return templates.TemplateResponse("index.html", {"request": request, "user_id": id})

@app.post("/hist/")
async def save_chat_history(history: dict):
    user_id = history.get('userId')
    if not user_id:
        raise HTTPException(status_code=400, detail="userId is required")

    try:
        hist = ''.join([f"'{entry['sender']}: {entry['message']}'\n" for entry in history['history']])
        summary = f"Conversation summary for user interest analysis:\n{hist}"
        
        sf.Lead.update(user_id, {'Description': summary})
        return {"summary": summary, "message": "Chat history saved"}
    except Exception as e:
        raise HTTPException(status_code=500, detail=f"Failed to update lead: {str(e)}")

@app.post("/webhook")
async def receive_form_data(request: Request):
    try:
        form_data = await request.json()
        first_name, last_name = split_name(form_data.get('name', ''))
        
        data = {
            'FirstName': first_name,
            'LastName': last_name,
            'Description': 'New lead from webhook',
            'Company': form_data.get('company', 'Unknown'),
            'Phone': form_data.get('phone', '').strip(),
            'Email': form_data.get('email', ''),
        }
        
        result = sf.Lead.create(data)
        return JSONResponse({"id": result['id']})
    except Exception as e:
        raise HTTPException(status_code=500, detail=f"Failed to process webhook: {str(e)}")

@app.post("/chat/")
async def chat(request: MessageRequest):
    try:
        response = handle_query(request.message)
        message_data = {
            "sender": "User",
            "message": request.message,
            "response": response,
            "timestamp": datetime.datetime.now().isoformat()
        }
        chat_history.append(message_data)
        return {"response": response}
    except Exception as e:
        raise HTTPException(status_code=500, detail=f"Chat processing failed: {str(e)}")

@app.get("/")
def read_root():
    return {"message": "Welcome to the Redfernstech API"}