File size: 13,540 Bytes
87712ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
import os
import pandas as pd
import textwrap
import random
import duckdb
import requests
import json
import tempfile
from datasets import load_dataset
from collections import defaultdict

class DatasetWrapper:
    def __init__(self, hf_token, dataset_name="lmsys/lmsys-chat-1m", verbose=True, 
                 conversations_index="json/conversations_index.json", cache_size=50, request_timeout=20):
        self.hf_token = hf_token
        self.dataset_name = dataset_name
        self.headers = {"Authorization": f"Bearer {self.hf_token}"}
        self.timeout = request_timeout
        self.cache_size = cache_size
        self.verbose = verbose
        parquet_list_url = f"https://datasets-server.huggingface.co/parquet?dataset={self.dataset_name}"
        response = self._safe_get(parquet_list_url)
        # Extract URLs from the response JSON
        if response is not None:
            self.parquet_urls = [file['url'] for file in response.json()['parquet_files']]
            if self.verbose:
                print("\nParquet URLs:")
                for url in self.parquet_urls:
                    print(url)
                    head_response = self._safe_head(url)
                    file_size = int(head_response.headers['Content-Length'])
                    print(f"{url.split('/')[-1]}: {file_size} bytes")

        # Loading the index
        try:
            with open(conversations_index, "r", encoding="utf-8") as f:
                self.conversations_index = json.load(f)
        except (FileNotFoundError, json.JSONDecodeError):
            print(f"Conversations index file not found or invalid. Creating a new one at {conversations_index}.")
            # Ensure directory exists
            os.makedirs(os.path.dirname(conversations_index), exist_ok=True)
            self.create_conversations_index(output_index_file=conversations_index)
            with open(conversations_index, "r", encoding="utf-8") as f:
                self.conversations_index = json.load(f)

        # Initialize active conversation and DataFrame        
        # Read from "pkl/cached_chats.pkl" if available:
        try:
            self.active_df = pd.read_pickle("pkl/cached_chats.pkl")
            print(f"Loaded {len(self.active_df)} cached chats")
            self.active_df = self.active_df.sample(self.cache_size).reset_index(drop=True)
        except (FileNotFoundError, ValueError):
            self.active_df = pd.DataFrame()
            print("No cached chats found")
        if not self.active_df.empty:
            try:
                self.active_conversation = Conversation(self.active_df.iloc[0])
            except Exception as e:
                print(f"No conversations available: {e}")
        else:
            self.active_conversation = None

    def _safe_get(self, url):
        if self.timeout == 0:
            print("Timeout is set to 0. Skipping GET request.")
            return None
        else:
            try:
                response = requests.get(url, headers=self.headers, timeout=self.timeout)
                if response.status_code != 200:
                    raise ValueError(f"Failed to retrieve {url}. Status code: {response.status_code}")
                return response
            except requests.exceptions.Timeout:
                print(f"Timeout occurred for GET {url}. Skipping.")
                return None
            
    def _safe_head(self, url):
        if self.timeout == 0:
            print("Timeout is set to 0. Skipping HEAD request.")
            return None
        try:
            response = requests.head(url, allow_redirects=True, headers=self.headers, timeout=self.timeout)
            return response
        except requests.exceptions.Timeout:
            print(f"Timeout occurred for GET {url}. Skipping.")
            return None

    def extract_sample_conversations(self, n_samples):
        url = random.choice(self.parquet_urls)
        print(f"Sampling conversations from {url}")
        # Download file with auth headers using requests
        r = self._safe_get(url)
        if r is None:
            print(f"Timeout occurred for GET {url}. Skipping sample extraction.")
            return self.active_df
        # Write the downloaded content into a temporary file
        with tempfile.NamedTemporaryFile(suffix=".parquet", delete=False) as tmp:
            tmp.write(r.content)
            # tmp.flush()
            tmp_path = tmp.name
        try:
            query_result = duckdb.query(f"SELECT * FROM read_parquet('{tmp_path}') USING SAMPLE {n_samples}").df()
            self.active_df = query_result
            try:
                self.active_conversation = Conversation(query_result.iloc[0])
            except Exception as e:
                print(f"No conversations available: {e}")
        finally:
            # Clean up the temporary file
            if os.path.exists(tmp_path):
                os.unlink(tmp_path)

        return query_result

    def extract_conversations(self, conversation_ids):

        # Create a lookup table for file names -> URLs
        file_url_map = {url.split("/")[-1]: url for url in self.parquet_urls}

        # Group conversation IDs by file
        file_to_conversations = defaultdict(list)
        for convid in conversation_ids:
            if convid in self.conversations_index:
                file_to_conversations[self.conversations_index[convid]].append(convid)

        result_df = pd.DataFrame()

        for file_name, conv_ids in file_to_conversations.items():
            if file_name not in file_url_map:
                print(f"File {file_name} not found in URL list, skipping.")
                continue

            file_url = file_url_map[file_name]
            print(f"Querying file: {file_name} for {len(conv_ids)} conversations")

            try:
                r = self._safe_get(file_url)
                if r == None:
                    print(f"Timeout occurred for GET {file_url}. Skipping file {file_name}.")
                    continue

                with tempfile.NamedTemporaryFile(suffix=".parquet", delete=False) as tmp:
                    tmp.write(r.content)
                    tmp_path = tmp.name
                try:
                    conv_id_list = "', '".join(conv_ids)
                    query_str = f"""
                        SELECT * FROM read_parquet('{tmp_path}') 
                        WHERE conversation_id IN ('{conv_id_list}')
                    """
                    df = duckdb.query(query_str).df()
                finally:
                    if os.path.exists(tmp_path):
                        os.unlink(tmp_path)

                if not df.empty:
                    print(f"Found {len(df)} conversations in {file_name}")
                    result_df = pd.concat([result_df, df], ignore_index=True)

            except Exception as e:
                print(f"Error processing {file_name}: {e}")

        self.active_df = result_df
        try:
            self.active_conversation = Conversation(self.active_df.iloc[0])
        except Exception as e:
            print(f"No conversations available: {e}")

        return result_df
    
    def literal_text_search(self, filter_str, min_results=1):
        # If filter_str is empty, sample random conversations
        if filter_str == "":
            result_df = self.extract_sample_conversations(50)
        urls = self.parquet_urls.copy()
        random.shuffle(urls)
        
        result_df = pd.DataFrame()

        for url in urls:
            print(f"Querying file: {url}")
            r = self._safe_get(url)
            if r == None:
                print(f"Timeout occurred for GET {url}. Skipping file {url}.")
                continue
            with tempfile.NamedTemporaryFile(suffix=".parquet", delete=False) as tmp:
                tmp.write(r.content)
                tmp_path = tmp.name

            try:
                query_str = f"""
                    SELECT * FROM read_parquet('{tmp_path}') 
                    WHERE contains(lower(cast(conversation as VARCHAR)), lower('{filter_str}'))
                    """
                df = duckdb.query(query_str).df()
            finally:
                if os.path.exists(tmp_path):
                    os.unlink(tmp_path)

            print(f"Found {len(df)} result(s) in {url.split('/')[-1]}")
            
            if len(df) > 0:
                result_df = pd.concat([result_df, df], ignore_index=True)
                
            if len(result_df) >= min_results:
                break
        if len(result_df) == 0:
            print("No results found. Returning empty DataFrame.")
            placeholder_row = {'conversation_id': "No result found",
                               'model': "-",
                               'conversation': [
                                {'content': '-', 'role': 'user'},
                                {'content': '-', 'role': 'assistant'}
                               ],
                               'turn': "-",
                               'language': "-",
                               'openai_moderation': "[{'-': '-', '-': '-'}]",
                               'redacted': "-",}
            result_df = pd.DataFrame([placeholder_row])
            print(result_df)
        self.active_df = result_df
        try:
            self.active_conversation = Conversation(self.active_df.iloc[0])
        except Exception as e:
            print(f"No conversations available: {e}")
        return result_df
    
    def create_conversations_index(self, output_index_file="json/conversations_index.json"):
        """
        Builds an index of conversation IDs from a list of Parquet file URLs.
        Stores the index as a JSON mapping conversation IDs to their respective file names.
        """
        index = {}

        for url in self.parquet_urls:
            file_name = url.split('/')[-1]  # Extract file name from URL
            print(f"Indexing file: {file_name}")

            try:
                # Download the file temporarily
                r = requests.get(url, headers=self.headers)
                with tempfile.NamedTemporaryFile(suffix=".parquet", delete=False) as tmp:
                    tmp.write(r.content)
                    # tmp.flush()
                    tmp_path = tmp.name
                try:
                    query = f"SELECT conversation_id FROM read_parquet('{tmp_path}')"
                    df = duckdb.query(query).to_df()
                finally:
                    if os.path.exists(tmp_path):
                        os.unlink(tmp_path)

                # Map conversation IDs to file name (not the full URL)
                for _, row in df.iterrows():
                    index[row["conversation_id"]] = file_name

            except Exception as e:
                print(f"Error indexing {file_name}: {e}")

        # Save index for fast lookup
        with open(output_index_file, "w", encoding="utf-8") as f:
            json.dump(index, f, indent=2)

        return output_index_file


class Conversation:
    def __init__(self, data):
        """
        Initialize a conversation object either from conversation data directly or from a DataFrame row.
        
        Parameters:
        - data: Can be either a list of conversation messages or a pandas Series/dict containing conversation data
        """
        # Handle both direct conversation data and DataFrame row
        if isinstance(data, (pd.Series, dict)):
            # Store all metadata separately
            self.conversation_metadata = {}
            for key, value in (data.items() if isinstance(data, pd.Series) else data.items()):
                if key == 'conversation':
                    self.conversation_data = value
                else:
                    self.conversation_metadata[key] = value
        else:
            # Direct initialization with conversation data
            self.conversation_data = data
            self.conversation_metadata = {}

    def add_turns(self):
        """
        Adds a 'turn' key to each dictionary in the conversation,
        identifying the turn (pair of user and assistant messages).

        Returns:
        - list: The updated conversation with 'turn' keys added.
        """
        turn_counter = 0
        for message in self.conversation_data:
            if message['role'] == 'user':
                turn_counter += 1
            message['turn'] = turn_counter
        return self.conversation_data
    
    def pretty_print(self, user_prefix, assistant_prefix, width=80):
        """
        Prints the conversation with specified prefixes and wrapped text.

        Parameters:
        - user_prefix (str): Prefix to prepend to user messages.
        - assistant_prefix (str): Prefix to prepend to assistant messages.
        - width (int): Maximum characters per line for wrapping.
        """
        wrapper = textwrap.TextWrapper(width=width)
        
        for message in self.conversation_data:
            if message['role'] == 'user':
                prefix = user_prefix
            elif message['role'] == 'assistant':
                prefix = assistant_prefix
            else:
                continue  # Ignore roles other than 'user' and 'assistant'
            
            # Split on existing newlines, wrap each line, and join back with newlines
            wrapped_content = "\n".join(
                wrapper.fill(line) for line in message['content'].splitlines()
            )
            print(f"{prefix} {wrapped_content}\n")