File size: 12,414 Bytes
87712ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
import os
import pandas as pd
import textwrap
import random
from datasets import load_dataset
from IPython.display import display

class LMSYSChat1MHandler:
    def __init__(self, hf_token, streaming=False, verbose=True):
        self.hf_token = hf_token
        self.streaming = streaming
        self.lmsys_dataset = load_dataset(
            'lmsys/lmsys-chat-1m',
            revision="main",
            token=self.hf_token,
            streaming=self.streaming
        )
        self.verbose = verbose
        if verbose:
            print(self.lmsys_dataset)
        self.df_sample = None
        self.df_prompts = None
        self.unwrapped_turns_df = None

        if not self.streaming and verbose:
            print('Data is cached at:\n')
            for file_info in self.lmsys_dataset['train'].cache_files:
                filename = file_info['filename']
                file_size = os.path.getsize(filename)
                i = int((len(filename) - 41) / 2)
                print(f"Filename: {filename[:i]}*{filename[-41:]}\nSize: {file_size} bytes")

    def extract_df_sample(self, n_samples=None, conversation_ids=None):
        """
        Extracts a sample of conversations or specific conversations based on their conversation IDs.

        Parameters:
        - n_samples (int): Number of random samples to extract. Ignored if `conversation_ids` is provided.
        - conversation_ids (list): List of conversation IDs to extract. If provided, this takes precedence over `n_samples`.

        Returns:
        - pd.DataFrame: A DataFrame containing the extracted conversations.
        """
        if conversation_ids:
            # Filter conversations based on the provided conversation IDs
            df_sample = self.lmsys_dataset['train'].to_pandas()
            df_sample = df_sample[df_sample['conversation_id'].isin(conversation_ids)]
            print(f"Retrieved {len(df_sample)} conversations based on specified IDs")
        else:
            # Randomly sample conversations if no IDs are provided
            if not self.streaming:    
                df_sample = self.lmsys_dataset['train'].to_pandas().sample(n_samples)
                print(f"Retrieved {len(df_sample)} random conversations from lmsys/lmsys-chat-1m")
            else:
                # Take a sample from the streamed dataset
                streamed_samples = []
                for i, row in enumerate(self.lmsys_dataset['train']):
                    streamed_samples.append(row)
                    if i + 1 == n_samples:  # Collect only the desired number of samples
                        break
                # Shuffle and convert the collected samples to a Pandas DataFrame
                random.shuffle(streamed_samples)
                df_sample = pd.DataFrame(streamed_samples)
                
        self.df_sample = df_sample
        if self.verbose and len(df_sample) > 4:
            display(df_sample.head(2))
            print('...')
            display(df_sample.tail(2))
        return df_sample
    
    def parquet_sampling(self, n_samples):
        base_url = "https://huggingface.co/datasets/lmsys/lmsys-chat-1m/resolve/main/data/"
        data_files = [
            "train-00000-of-00006-4feeb3f83346a0e9.parquet",
            "train-00001-of-00006-4030672591c2f478.parquet",
            "train-00002-of-00006-1779b7cec9462180.parquet",
            "train-00003-of-00006-2fa862bfed56af1f.parquet",
            "train-00004-of-00006-18f4bdd50c103e71.parquet",
            "train-00005-of-00006-fe1acc5d10a9f0e2.parquet"
        ]
        sample_file = random.choice(data_files)
        print(f"Sampling from {sample_file}")
        data_files = {"train": base_url + sample_file}
        parquet_sample = load_dataset("parquet", data_files=data_files, split="train")
        df_sample = parquet_sample.to_pandas().sample(n_samples)
        print(f"Retrieved {len(df_sample)} random conversations from lmsys/lmsys-chat-1m/{sample_file}")
        self.df_sample = df_sample
        if self.verbose and len(df_sample) > 4:
            display(df_sample.head(2))
            print('...')
            display(df_sample.tail(2))
        return df_sample

    def add_turns_to_conversations(self):
        """
        Adds 'turn' keys to each conversation in the 'conversation' column of the dataframe.
        """
        self.df_sample['conversation'] = self.df_sample['conversation'].apply(
            lambda conv: Conversation(conv).add_turns()
        )
        df_with_turns = self.df_sample
        return df_with_turns
    
    def unwrap_turns(self):
        """
        Creates a dataframe where each row corresponds to a pair of user-assistant messages in a conversation and turn.
        The 'prompt' column contains the user's message, and the 'response' column contains the assistant's message.
        Each row includes a 'turn_id' column, which numbers the turns uniquely per conversation.
        """
        paired_data = []
        for _, row in self.df_sample.iterrows():
            conversation_id = row['conversation_id']
            row_data = row.to_dict()
            row_data.pop('conversation')  # Remove the 'conversation' field as it's being unwrapped

            current_prompt = None
            turn_id = None

            for message in row['conversation']:
                if message['role'] == 'user':
                    current_prompt = message['content']
                    turn_id = f"{conversation_id}{message['turn']:03}"  # Create turn_id
                elif message['role'] == 'assistant' and current_prompt is not None:
                    # Create a new row with the user-assistant pair
                    paired_row = {
                        **row_data,
                        'turn_n': message['turn'],
                        'prompt': current_prompt,
                        'response': message['content'],
                    }
                    paired_data.append(paired_row)
                    current_prompt = None  # Reset after pairing

        unwrapped_turns_df = pd.DataFrame(paired_data)
        unwrapped_turns_df.rename(columns={"turn": "conversation_turns"}, inplace=True) # The naming in the original dataset is ambiguous
        self.unwrapped_turns_df = unwrapped_turns_df
        return unwrapped_turns_df

    def extract_prompts(self, filter_language=None, min_char_length=20, max_char_length=500, exclusions=None):
        """
        Extracts user prompts from the sample dataframe, optionally filtering by language and limiting the character length.

        Parameters:
        - filter_language (list of str or None): A list of specific languages to filter prompts by. If None, no language 
          filter is applied. Examples of valid values include ['English'], ['English', 'Portuguese'], or 
          ['Spanish', 'French', 'German'].
        - min_char_length (int): The minimum character length for user prompts to include. Defaults to 20.
        - max_char_length (int): The maximum character length for user prompts to include. Defaults to 500.
        - exclusions (str or None): Path to a text file containing phrases. Prompts containing any of these phrases
          will be excluded from the results. If None, no exclusions are applied.

        Returns:
        - pd.DataFrame: A DataFrame containing extracted prompts with columns 'prompt' and 'language'.
        """
        df_sample = self.df_sample
        if filter_language:
            extracted_data = df_sample[df_sample['language'].isin(filter_language)].apply(
                lambda row: [
                    {'content': entry['content'], 'language': row['language']}
                    for entry in row['conversation']
                    if entry['role'] == 'user' and min_char_length <= len(entry['content']) <= max_char_length
                ], axis=1
            ).explode().dropna()
        else:
            extracted_data = df_sample.apply(
                lambda row: [
                    {'content': entry['content'], 'language': row['language']}
                    for entry in row['conversation']
                    if entry['role'] == 'user' and min_char_length <= len(entry['content']) <= max_char_length
                ], axis=1
            ).explode().dropna()

        df_prompts = pd.DataFrame(extracted_data.tolist())
        df_prompts.rename(columns={'content': 'prompt'}, inplace=True)

        orig_length = len(df_prompts)
        if exclusions:
            # Excluding prompts with phrases that are repeated often in this dataset
            with open(exclusions, 'r') as f:
                exclusions = [line.strip() for line in f.readlines()]
            df_prompts = df_prompts[~df_prompts['prompt'].apply(lambda x: any(exclusion in x for exclusion in exclusions))]
            print(f"Excluded {orig_length - len(df_prompts)} prompts.")

        self.df_prompts = df_prompts
        if self.verbose and len(df_sample) > 4:
            display(df_prompts.head(2))
            print('...')
            display(df_prompts.tail(2))
        return df_prompts
    
    def extract_prompt_sample(self):
        prompt_sample = self.df_prompts.sample(1)['prompt'].values[0]
        if self.verbose:
            wrapped_message = textwrap.fill(prompt_sample, width=120)
            print(wrapped_message)
        return prompt_sample
    
    def search_conversations(self, search_term):
        """
        Searches the dataset for a given string and returns a DataFrame with matching records.

        Parameters:
        - search_term (str): The string to search for in the dataset.

        Returns:
        - pd.DataFrame: A DataFrame containing conversations where the search term is found.
        """
        if self.streaming:
            raise ValueError("Search is not supported in streaming mode.")
        df = self.lmsys_dataset['train'].to_pandas()
        # Filter rows where the search term appears in the 'conversation' column
        matching_records = df[df['conversation'].apply(
            lambda conv: any(search_term.lower() in message['content'].lower() for message in conv)
        )]
        if self.verbose:
            print(f"Found {len(matching_records)} matching conversations for search term: '{search_term}'")
        return matching_records
        
    def print_language_counts(self, df):
        language_counts = df['language'].value_counts()
        print("Language Record Counts:")
        print(language_counts.to_frame('Count').reset_index().rename(columns={'index': 'Language'}))


class Conversation:
    def __init__(self, conversation_data):
        """
        Initializes the Conversation object with the conversation data.

        Parameters:
        - conversation_data (list): A list of dictionaries representing a conversation.
        """
        self.conversation_data = conversation_data

    def add_turns(self):
        """
        Adds a 'turn' key to each dictionary in the conversation,
        identifying the turn (pair of user and assistant messages).

        Returns:
        - list: The updated conversation with 'turn' keys added.
        """
        turn_counter = 0
        for message in self.conversation_data:
            if message['role'] == 'user':
                turn_counter += 1
            message['turn'] = turn_counter
        return self.conversation_data
    
    def pretty_print(self, user_prefix, assistant_prefix, width=80):
        """
        Prints the conversation with specified prefixes and wrapped text.

        Parameters:
        - user_prefix (str): Prefix to prepend to user messages.
        - assistant_prefix (str): Prefix to prepend to assistant messages.
        - width (int): Maximum characters per line for wrapping.
        """
        wrapper = textwrap.TextWrapper(width=width)
        
        for message in self.conversation_data:
            if message['role'] == 'user':
                prefix = user_prefix
            elif message['role'] == 'assistant':
                prefix = assistant_prefix
            else:
                continue  # Ignore roles other than 'user' and 'assistant'
            
            # Split on existing newlines, wrap each line, and join back with newlines
            wrapped_content = "\n".join(
                wrapper.fill(line) for line in message['content'].splitlines()
            )
            print(f"{prefix} {wrapped_content}\n")