File size: 12,414 Bytes
87712ac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 |
import os
import pandas as pd
import textwrap
import random
from datasets import load_dataset
from IPython.display import display
class LMSYSChat1MHandler:
def __init__(self, hf_token, streaming=False, verbose=True):
self.hf_token = hf_token
self.streaming = streaming
self.lmsys_dataset = load_dataset(
'lmsys/lmsys-chat-1m',
revision="main",
token=self.hf_token,
streaming=self.streaming
)
self.verbose = verbose
if verbose:
print(self.lmsys_dataset)
self.df_sample = None
self.df_prompts = None
self.unwrapped_turns_df = None
if not self.streaming and verbose:
print('Data is cached at:\n')
for file_info in self.lmsys_dataset['train'].cache_files:
filename = file_info['filename']
file_size = os.path.getsize(filename)
i = int((len(filename) - 41) / 2)
print(f"Filename: {filename[:i]}*{filename[-41:]}\nSize: {file_size} bytes")
def extract_df_sample(self, n_samples=None, conversation_ids=None):
"""
Extracts a sample of conversations or specific conversations based on their conversation IDs.
Parameters:
- n_samples (int): Number of random samples to extract. Ignored if `conversation_ids` is provided.
- conversation_ids (list): List of conversation IDs to extract. If provided, this takes precedence over `n_samples`.
Returns:
- pd.DataFrame: A DataFrame containing the extracted conversations.
"""
if conversation_ids:
# Filter conversations based on the provided conversation IDs
df_sample = self.lmsys_dataset['train'].to_pandas()
df_sample = df_sample[df_sample['conversation_id'].isin(conversation_ids)]
print(f"Retrieved {len(df_sample)} conversations based on specified IDs")
else:
# Randomly sample conversations if no IDs are provided
if not self.streaming:
df_sample = self.lmsys_dataset['train'].to_pandas().sample(n_samples)
print(f"Retrieved {len(df_sample)} random conversations from lmsys/lmsys-chat-1m")
else:
# Take a sample from the streamed dataset
streamed_samples = []
for i, row in enumerate(self.lmsys_dataset['train']):
streamed_samples.append(row)
if i + 1 == n_samples: # Collect only the desired number of samples
break
# Shuffle and convert the collected samples to a Pandas DataFrame
random.shuffle(streamed_samples)
df_sample = pd.DataFrame(streamed_samples)
self.df_sample = df_sample
if self.verbose and len(df_sample) > 4:
display(df_sample.head(2))
print('...')
display(df_sample.tail(2))
return df_sample
def parquet_sampling(self, n_samples):
base_url = "https://huggingface.co/datasets/lmsys/lmsys-chat-1m/resolve/main/data/"
data_files = [
"train-00000-of-00006-4feeb3f83346a0e9.parquet",
"train-00001-of-00006-4030672591c2f478.parquet",
"train-00002-of-00006-1779b7cec9462180.parquet",
"train-00003-of-00006-2fa862bfed56af1f.parquet",
"train-00004-of-00006-18f4bdd50c103e71.parquet",
"train-00005-of-00006-fe1acc5d10a9f0e2.parquet"
]
sample_file = random.choice(data_files)
print(f"Sampling from {sample_file}")
data_files = {"train": base_url + sample_file}
parquet_sample = load_dataset("parquet", data_files=data_files, split="train")
df_sample = parquet_sample.to_pandas().sample(n_samples)
print(f"Retrieved {len(df_sample)} random conversations from lmsys/lmsys-chat-1m/{sample_file}")
self.df_sample = df_sample
if self.verbose and len(df_sample) > 4:
display(df_sample.head(2))
print('...')
display(df_sample.tail(2))
return df_sample
def add_turns_to_conversations(self):
"""
Adds 'turn' keys to each conversation in the 'conversation' column of the dataframe.
"""
self.df_sample['conversation'] = self.df_sample['conversation'].apply(
lambda conv: Conversation(conv).add_turns()
)
df_with_turns = self.df_sample
return df_with_turns
def unwrap_turns(self):
"""
Creates a dataframe where each row corresponds to a pair of user-assistant messages in a conversation and turn.
The 'prompt' column contains the user's message, and the 'response' column contains the assistant's message.
Each row includes a 'turn_id' column, which numbers the turns uniquely per conversation.
"""
paired_data = []
for _, row in self.df_sample.iterrows():
conversation_id = row['conversation_id']
row_data = row.to_dict()
row_data.pop('conversation') # Remove the 'conversation' field as it's being unwrapped
current_prompt = None
turn_id = None
for message in row['conversation']:
if message['role'] == 'user':
current_prompt = message['content']
turn_id = f"{conversation_id}{message['turn']:03}" # Create turn_id
elif message['role'] == 'assistant' and current_prompt is not None:
# Create a new row with the user-assistant pair
paired_row = {
**row_data,
'turn_n': message['turn'],
'prompt': current_prompt,
'response': message['content'],
}
paired_data.append(paired_row)
current_prompt = None # Reset after pairing
unwrapped_turns_df = pd.DataFrame(paired_data)
unwrapped_turns_df.rename(columns={"turn": "conversation_turns"}, inplace=True) # The naming in the original dataset is ambiguous
self.unwrapped_turns_df = unwrapped_turns_df
return unwrapped_turns_df
def extract_prompts(self, filter_language=None, min_char_length=20, max_char_length=500, exclusions=None):
"""
Extracts user prompts from the sample dataframe, optionally filtering by language and limiting the character length.
Parameters:
- filter_language (list of str or None): A list of specific languages to filter prompts by. If None, no language
filter is applied. Examples of valid values include ['English'], ['English', 'Portuguese'], or
['Spanish', 'French', 'German'].
- min_char_length (int): The minimum character length for user prompts to include. Defaults to 20.
- max_char_length (int): The maximum character length for user prompts to include. Defaults to 500.
- exclusions (str or None): Path to a text file containing phrases. Prompts containing any of these phrases
will be excluded from the results. If None, no exclusions are applied.
Returns:
- pd.DataFrame: A DataFrame containing extracted prompts with columns 'prompt' and 'language'.
"""
df_sample = self.df_sample
if filter_language:
extracted_data = df_sample[df_sample['language'].isin(filter_language)].apply(
lambda row: [
{'content': entry['content'], 'language': row['language']}
for entry in row['conversation']
if entry['role'] == 'user' and min_char_length <= len(entry['content']) <= max_char_length
], axis=1
).explode().dropna()
else:
extracted_data = df_sample.apply(
lambda row: [
{'content': entry['content'], 'language': row['language']}
for entry in row['conversation']
if entry['role'] == 'user' and min_char_length <= len(entry['content']) <= max_char_length
], axis=1
).explode().dropna()
df_prompts = pd.DataFrame(extracted_data.tolist())
df_prompts.rename(columns={'content': 'prompt'}, inplace=True)
orig_length = len(df_prompts)
if exclusions:
# Excluding prompts with phrases that are repeated often in this dataset
with open(exclusions, 'r') as f:
exclusions = [line.strip() for line in f.readlines()]
df_prompts = df_prompts[~df_prompts['prompt'].apply(lambda x: any(exclusion in x for exclusion in exclusions))]
print(f"Excluded {orig_length - len(df_prompts)} prompts.")
self.df_prompts = df_prompts
if self.verbose and len(df_sample) > 4:
display(df_prompts.head(2))
print('...')
display(df_prompts.tail(2))
return df_prompts
def extract_prompt_sample(self):
prompt_sample = self.df_prompts.sample(1)['prompt'].values[0]
if self.verbose:
wrapped_message = textwrap.fill(prompt_sample, width=120)
print(wrapped_message)
return prompt_sample
def search_conversations(self, search_term):
"""
Searches the dataset for a given string and returns a DataFrame with matching records.
Parameters:
- search_term (str): The string to search for in the dataset.
Returns:
- pd.DataFrame: A DataFrame containing conversations where the search term is found.
"""
if self.streaming:
raise ValueError("Search is not supported in streaming mode.")
df = self.lmsys_dataset['train'].to_pandas()
# Filter rows where the search term appears in the 'conversation' column
matching_records = df[df['conversation'].apply(
lambda conv: any(search_term.lower() in message['content'].lower() for message in conv)
)]
if self.verbose:
print(f"Found {len(matching_records)} matching conversations for search term: '{search_term}'")
return matching_records
def print_language_counts(self, df):
language_counts = df['language'].value_counts()
print("Language Record Counts:")
print(language_counts.to_frame('Count').reset_index().rename(columns={'index': 'Language'}))
class Conversation:
def __init__(self, conversation_data):
"""
Initializes the Conversation object with the conversation data.
Parameters:
- conversation_data (list): A list of dictionaries representing a conversation.
"""
self.conversation_data = conversation_data
def add_turns(self):
"""
Adds a 'turn' key to each dictionary in the conversation,
identifying the turn (pair of user and assistant messages).
Returns:
- list: The updated conversation with 'turn' keys added.
"""
turn_counter = 0
for message in self.conversation_data:
if message['role'] == 'user':
turn_counter += 1
message['turn'] = turn_counter
return self.conversation_data
def pretty_print(self, user_prefix, assistant_prefix, width=80):
"""
Prints the conversation with specified prefixes and wrapped text.
Parameters:
- user_prefix (str): Prefix to prepend to user messages.
- assistant_prefix (str): Prefix to prepend to assistant messages.
- width (int): Maximum characters per line for wrapping.
"""
wrapper = textwrap.TextWrapper(width=width)
for message in self.conversation_data:
if message['role'] == 'user':
prefix = user_prefix
elif message['role'] == 'assistant':
prefix = assistant_prefix
else:
continue # Ignore roles other than 'user' and 'assistant'
# Split on existing newlines, wrap each line, and join back with newlines
wrapped_content = "\n".join(
wrapper.fill(line) for line in message['content'].splitlines()
)
print(f"{prefix} {wrapped_content}\n") |