Spaces:
Runtime error
Runtime error
import nltk | |
import librosa | |
import torch | |
import gradio as gr | |
from pyctcdecode import build_ctcdecoder | |
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC | |
nltk.download("punkt") | |
#Loading the model and the tokenizer | |
model_name = "facebook/wav2vec2-base-960h" | |
processor = Wav2Vec2Processor.from_pretrained(model_name) | |
model = Wav2Vec2ForCTC.from_pretrained(model_name) | |
def load_data(input_file): | |
#read the file | |
speech, sample_rate = librosa.load(input_file) | |
#make it 1-D | |
if len(speech.shape) > 1: | |
speech = speech[:,0] + speech[:,1] | |
#resampling to 16KHz | |
if sample_rate !=16000: | |
speech = librosa.resample(speech, sample_rate,16000) | |
return speech | |
def fix_transcription_casing(input_sentence): | |
sentences = nltk.sent_tokenize(input_sentence) | |
return (' '.join([s.replace(s[0],s[0].capitalize(),1) for s in sentences])) | |
def predict_and_decode(input_file): | |
speech = load_data(input_file) | |
#tokenize | |
input_values = processor(speech, return_tensors="pt", sampling_rate=16000).input_values | |
logits = model(input_values).logits | |
vocab_list = list(processor.tokenizer.get_vocab().keys()) | |
# #Take argmax | |
# predicted_ids = torch.argmax(logits, dim=-1) | |
# #Get the words from predicted word ids | |
# transcription = tokenizer.decode(predicted_ids[0]) | |
decoder = build_ctcdecoder(vocab_list) | |
pred = decoder.decode(logits) | |
#Output is all upper case | |
transcribed_text = fix_transcription_casing(pred.lower()) | |
return transcribed_text | |
gr.Interface(predict_and_decode, | |
inputs = gr.inputs.Audio(source="microphone", type="filepath", optional=True, label="Speaker"), | |
outputs = gr.outputs.Textbox(label="Output Text"), | |
title="ASR using Wav2Vec 2.0 & pyctcdecode", | |
description = "Wav2Vec2 in-action", | |
layout = "horizontal", | |
examples = [["test.wav"]], theme="huggingface").launch() |