Update app.py
Browse files
app.py
CHANGED
@@ -57,38 +57,19 @@ def process_video(video_path, target, progress=gr.Progress()):
|
|
57 |
return None, f"Error: Unable to open video file at {video_path}"
|
58 |
|
59 |
frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
60 |
-
|
61 |
-
output_fps = 3
|
62 |
-
|
63 |
-
output_path = "output_video.mp4"
|
64 |
-
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
65 |
-
out = cv2.VideoWriter(output_path, fourcc, output_fps, (int(cap.get(3)), int(cap.get(4))))
|
66 |
-
|
67 |
-
batch_size = 8
|
68 |
-
frames = []
|
69 |
|
70 |
for frame in progress.tqdm(range(frame_count)):
|
71 |
ret, img = cap.read()
|
72 |
if not ret:
|
73 |
break
|
74 |
|
75 |
-
if frame % (original_fps // output_fps) != 0:
|
76 |
-
continue
|
77 |
-
|
78 |
pil_img = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
|
79 |
-
|
80 |
-
|
81 |
-
if len(frames) == batch_size or frame == frame_count - 1:
|
82 |
-
annotated_frames = [detect_objects_in_frame(frame, target) for frame in frames]
|
83 |
-
for annotated_img in annotated_frames:
|
84 |
-
annotated_frame = cv2.cvtColor(np.array(annotated_img), cv2.COLOR_RGB2BGR)
|
85 |
-
out.write(annotated_frame)
|
86 |
-
frames = []
|
87 |
|
88 |
cap.release()
|
89 |
-
|
90 |
-
|
91 |
-
return output_path, None
|
92 |
|
93 |
def load_sample_frame(video_path):
|
94 |
cap = cv2.VideoCapture(video_path)
|
@@ -107,31 +88,47 @@ def gradio_app():
|
|
107 |
|
108 |
video_input = gr.Video(label="Upload Video")
|
109 |
target_input = gr.Textbox(label="Target Object", value="Elephant")
|
110 |
-
|
|
|
111 |
error_output = gr.Textbox(label="Error Messages", visible=False)
|
112 |
sample_video_frame = gr.Image(value=load_sample_frame("Drone Video of African Wildlife Wild Botswan.mp4"), label="Sample Video Frame")
|
113 |
use_sample_button = gr.Button("Use Sample Video")
|
114 |
progress_bar = gr.Progress()
|
115 |
|
|
|
|
|
116 |
def process_and_update(video, target):
|
117 |
-
|
118 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
119 |
|
120 |
video_input.upload(process_and_update,
|
121 |
inputs=[video_input, target_input],
|
122 |
-
outputs=[
|
|
|
|
|
|
|
|
|
123 |
|
124 |
def use_sample_video():
|
125 |
sample_video_path = "Drone Video of African Wildlife Wild Botswan.mp4"
|
126 |
-
|
127 |
-
return
|
128 |
|
129 |
use_sample_button.click(use_sample_video,
|
130 |
inputs=None,
|
131 |
-
outputs=[
|
132 |
|
133 |
return app
|
134 |
|
135 |
if __name__ == "__main__":
|
136 |
app = gradio_app()
|
137 |
-
app.launch(share=True)
|
|
|
57 |
return None, f"Error: Unable to open video file at {video_path}"
|
58 |
|
59 |
frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
60 |
+
processed_frames = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
|
62 |
for frame in progress.tqdm(range(frame_count)):
|
63 |
ret, img = cap.read()
|
64 |
if not ret:
|
65 |
break
|
66 |
|
|
|
|
|
|
|
67 |
pil_img = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
|
68 |
+
annotated_img = detect_objects_in_frame(pil_img, target)
|
69 |
+
processed_frames.append(np.array(annotated_img))
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
|
71 |
cap.release()
|
72 |
+
return processed_frames, None
|
|
|
|
|
73 |
|
74 |
def load_sample_frame(video_path):
|
75 |
cap = cv2.VideoCapture(video_path)
|
|
|
88 |
|
89 |
video_input = gr.Video(label="Upload Video")
|
90 |
target_input = gr.Textbox(label="Target Object", value="Elephant")
|
91 |
+
frame_slider = gr.Slider(minimum=0, maximum=100, step=1, label="Frame", value=0)
|
92 |
+
output_image = gr.Image(label="Processed Frame")
|
93 |
error_output = gr.Textbox(label="Error Messages", visible=False)
|
94 |
sample_video_frame = gr.Image(value=load_sample_frame("Drone Video of African Wildlife Wild Botswan.mp4"), label="Sample Video Frame")
|
95 |
use_sample_button = gr.Button("Use Sample Video")
|
96 |
progress_bar = gr.Progress()
|
97 |
|
98 |
+
processed_frames = gr.State([])
|
99 |
+
|
100 |
def process_and_update(video, target):
|
101 |
+
frames, error = process_video(video, target, progress_bar)
|
102 |
+
if frames is not None:
|
103 |
+
frame_slider.maximum = len(frames) - 1
|
104 |
+
frame_slider.value = 0
|
105 |
+
return frames, frames[0], error, gr.Slider.update(maximum=len(frames) - 1, value=0)
|
106 |
+
return None, None, error, gr.Slider.update(maximum=100, value=0)
|
107 |
+
|
108 |
+
def update_frame(frame_index, frames):
|
109 |
+
if frames and 0 <= frame_index < len(frames):
|
110 |
+
return frames[frame_index]
|
111 |
+
return None
|
112 |
|
113 |
video_input.upload(process_and_update,
|
114 |
inputs=[video_input, target_input],
|
115 |
+
outputs=[processed_frames, output_image, error_output, frame_slider])
|
116 |
+
|
117 |
+
frame_slider.change(update_frame,
|
118 |
+
inputs=[frame_slider, processed_frames],
|
119 |
+
outputs=[output_image])
|
120 |
|
121 |
def use_sample_video():
|
122 |
sample_video_path = "Drone Video of African Wildlife Wild Botswan.mp4"
|
123 |
+
frames, output_image, error, slider_update = process_and_update(sample_video_path, "Elephant")
|
124 |
+
return frames, output_image, error, slider_update
|
125 |
|
126 |
use_sample_button.click(use_sample_video,
|
127 |
inputs=None,
|
128 |
+
outputs=[processed_frames, output_image, error_output, frame_slider])
|
129 |
|
130 |
return app
|
131 |
|
132 |
if __name__ == "__main__":
|
133 |
app = gradio_app()
|
134 |
+
app.launch(share=True)
|