Update app.py
Browse files
app.py
CHANGED
@@ -15,42 +15,6 @@ device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
|
15 |
processor = Owlv2Processor.from_pretrained("google/owlv2-base-patch16")
|
16 |
model = Owlv2ForObjectDetection.from_pretrained("google/owlv2-base-patch16").to(device)
|
17 |
|
18 |
-
def detect_objects_in_frame(image, target):
|
19 |
-
draw = ImageDraw.Draw(image)
|
20 |
-
texts = [[target]]
|
21 |
-
inputs = processor(text=texts, images=image, return_tensors="pt", padding=True).to(device)
|
22 |
-
outputs = model(**inputs)
|
23 |
-
|
24 |
-
target_sizes = torch.Tensor([image.size[::-1]])
|
25 |
-
results = processor.post_process_object_detection(outputs=outputs, threshold=0.1, target_sizes=target_sizes)
|
26 |
-
|
27 |
-
color_map = {target: "red"}
|
28 |
-
|
29 |
-
try:
|
30 |
-
font = ImageFont.truetype("arial.ttf", 30)
|
31 |
-
except IOError:
|
32 |
-
font = ImageFont.load_default()
|
33 |
-
|
34 |
-
i = 0
|
35 |
-
text = texts[i]
|
36 |
-
boxes, scores, labels = results[i]["boxes"], results[i]["scores"], results[i]["labels"]
|
37 |
-
|
38 |
-
max_score = 0
|
39 |
-
for box, score, label in zip(boxes, scores, labels):
|
40 |
-
if score.item() >= 0.25:
|
41 |
-
box = [round(i, 2) for i in box.tolist()]
|
42 |
-
object_label = text[label]
|
43 |
-
confidence = round(score.item(), 3)
|
44 |
-
annotation = f"{object_label}: {confidence}"
|
45 |
-
|
46 |
-
draw.rectangle(box, outline=color_map.get(object_label, "red"), width=4)
|
47 |
-
text_position = (box[0], box[1] - 30)
|
48 |
-
draw.text(text_position, annotation, fill="white", font=font)
|
49 |
-
|
50 |
-
max_score = max(max_score, confidence)
|
51 |
-
|
52 |
-
return image, max_score
|
53 |
-
|
54 |
def process_video(video_path, target, progress=gr.Progress()):
|
55 |
if video_path is None:
|
56 |
return None, None, "Error: No video uploaded"
|
@@ -70,6 +34,9 @@ def process_video(video_path, target, progress=gr.Progress()):
|
|
70 |
|
71 |
processed_frames = []
|
72 |
frame_scores = []
|
|
|
|
|
|
|
73 |
|
74 |
for time in progress.tqdm(np.arange(0, video_duration, frame_duration)):
|
75 |
frame_number = int(time * original_fps)
|
@@ -79,9 +46,47 @@ def process_video(video_path, target, progress=gr.Progress()):
|
|
79 |
break
|
80 |
|
81 |
pil_img = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
|
82 |
-
|
83 |
-
|
84 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
|
86 |
cap.release()
|
87 |
return processed_frames, frame_scores, None
|
@@ -115,7 +120,7 @@ def load_sample_frame(video_path):
|
|
115 |
|
116 |
def gradio_app():
|
117 |
with gr.Blocks() as app:
|
118 |
-
gr.Markdown("# Video Object Detection with Owlv2 (3 FPS)")
|
119 |
|
120 |
video_input = gr.Video(label="Upload Video")
|
121 |
target_input = gr.Textbox(label="Target Object", value="Elephant")
|
|
|
15 |
processor = Owlv2Processor.from_pretrained("google/owlv2-base-patch16")
|
16 |
model = Owlv2ForObjectDetection.from_pretrained("google/owlv2-base-patch16").to(device)
|
17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
def process_video(video_path, target, progress=gr.Progress()):
|
19 |
if video_path is None:
|
20 |
return None, None, "Error: No video uploaded"
|
|
|
34 |
|
35 |
processed_frames = []
|
36 |
frame_scores = []
|
37 |
+
batch_size = 32
|
38 |
+
batch_frames = []
|
39 |
+
batch_times = []
|
40 |
|
41 |
for time in progress.tqdm(np.arange(0, video_duration, frame_duration)):
|
42 |
frame_number = int(time * original_fps)
|
|
|
46 |
break
|
47 |
|
48 |
pil_img = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
|
49 |
+
batch_frames.append(pil_img)
|
50 |
+
batch_times.append(time)
|
51 |
+
|
52 |
+
if len(batch_frames) == batch_size or time + frame_duration >= video_duration:
|
53 |
+
# Process the batch
|
54 |
+
texts = [[target]] * len(batch_frames)
|
55 |
+
inputs = processor(text=texts, images=batch_frames, return_tensors="pt", padding=True).to(device)
|
56 |
+
outputs = model(**inputs)
|
57 |
+
|
58 |
+
for i, (image, batch_time) in enumerate(zip(batch_frames, batch_times)):
|
59 |
+
target_sizes = torch.Tensor([image.size[::-1]])
|
60 |
+
results = processor.post_process_object_detection(outputs, target_sizes=target_sizes)
|
61 |
+
|
62 |
+
draw = ImageDraw.Draw(image)
|
63 |
+
max_score = 0
|
64 |
+
|
65 |
+
try:
|
66 |
+
font = ImageFont.truetype("arial.ttf", 30)
|
67 |
+
except IOError:
|
68 |
+
font = ImageFont.load_default()
|
69 |
+
|
70 |
+
boxes, scores, labels = results[i]["boxes"], results[i]["scores"], results[i]["labels"]
|
71 |
+
|
72 |
+
for box, score, label in zip(boxes, scores, labels):
|
73 |
+
if score.item() >= 0.25:
|
74 |
+
box = [round(i, 2) for i in box.tolist()]
|
75 |
+
object_label = target
|
76 |
+
confidence = round(score.item(), 3)
|
77 |
+
annotation = f"{object_label}: {confidence}"
|
78 |
+
|
79 |
+
draw.rectangle(box, outline="red", width=4)
|
80 |
+
text_position = (box[0], box[1] - 30)
|
81 |
+
draw.text(text_position, annotation, fill="white", font=font)
|
82 |
+
|
83 |
+
max_score = max(max_score, confidence)
|
84 |
+
|
85 |
+
processed_frames.append(np.array(image))
|
86 |
+
frame_scores.append(max_score)
|
87 |
+
|
88 |
+
batch_frames = []
|
89 |
+
batch_times = []
|
90 |
|
91 |
cap.release()
|
92 |
return processed_frames, frame_scores, None
|
|
|
120 |
|
121 |
def gradio_app():
|
122 |
with gr.Blocks() as app:
|
123 |
+
gr.Markdown("# Video Object Detection with Owlv2 (3 FPS, Batch Size 32)")
|
124 |
|
125 |
video_input = gr.Video(label="Upload Video")
|
126 |
target_input = gr.Textbox(label="Target Object", value="Elephant")
|