Update app.py
Browse files
app.py
CHANGED
@@ -5,6 +5,8 @@ import torch
|
|
5 |
from transformers import Owlv2Processor, Owlv2ForObjectDetection
|
6 |
import numpy as np
|
7 |
import os
|
|
|
|
|
8 |
|
9 |
# Check if CUDA is available, otherwise use CPU
|
10 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
@@ -24,7 +26,7 @@ def detect_objects_in_frame(image, target):
|
|
24 |
color_map = {target: "red"}
|
25 |
|
26 |
try:
|
27 |
-
font = ImageFont.truetype("arial.ttf",
|
28 |
except IOError:
|
29 |
font = ImageFont.load_default()
|
30 |
|
@@ -32,6 +34,7 @@ def detect_objects_in_frame(image, target):
|
|
32 |
text = texts[i]
|
33 |
boxes, scores, labels = results[i]["boxes"], results[i]["scores"], results[i]["labels"]
|
34 |
|
|
|
35 |
for box, score, label in zip(boxes, scores, labels):
|
36 |
if score.item() >= 0.25:
|
37 |
box = [round(i, 2) for i in box.tolist()]
|
@@ -39,42 +42,64 @@ def detect_objects_in_frame(image, target):
|
|
39 |
confidence = round(score.item(), 3)
|
40 |
annotation = f"{object_label}: {confidence}"
|
41 |
|
42 |
-
draw.rectangle(box, outline=color_map.get(object_label, "red"), width=
|
43 |
-
text_position = (box[0], box[1] -
|
44 |
draw.text(text_position, annotation, fill="white", font=font)
|
45 |
|
46 |
-
|
|
|
|
|
47 |
|
48 |
def process_video(video_path, target, progress=gr.Progress()):
|
49 |
if video_path is None:
|
50 |
-
return None, "Error: No video uploaded"
|
51 |
|
52 |
if not os.path.exists(video_path):
|
53 |
-
return None, f"Error: Video file not found at {video_path}"
|
54 |
|
55 |
cap = cv2.VideoCapture(video_path)
|
56 |
if not cap.isOpened():
|
57 |
-
return None, f"Error: Unable to open video file at {video_path}"
|
58 |
|
59 |
frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
60 |
original_fps = int(cap.get(cv2.CAP_PROP_FPS))
|
61 |
output_fps = 3
|
|
|
|
|
62 |
|
63 |
processed_frames = []
|
64 |
-
|
65 |
|
66 |
-
for
|
67 |
-
|
|
|
68 |
ret, img = cap.read()
|
69 |
if not ret:
|
70 |
break
|
71 |
|
72 |
pil_img = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
|
73 |
-
annotated_img = detect_objects_in_frame(pil_img, target)
|
74 |
processed_frames.append(np.array(annotated_img))
|
|
|
75 |
|
76 |
cap.release()
|
77 |
-
return processed_frames, None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
|
79 |
def load_sample_frame(video_path):
|
80 |
cap = cv2.VideoCapture(video_path)
|
@@ -95,18 +120,21 @@ def gradio_app():
|
|
95 |
target_input = gr.Textbox(label="Target Object", value="Elephant")
|
96 |
frame_slider = gr.Slider(minimum=0, maximum=100, step=1, label="Frame", value=0)
|
97 |
output_image = gr.Image(label="Processed Frame")
|
|
|
98 |
error_output = gr.Textbox(label="Error Messages", visible=False)
|
99 |
sample_video_frame = gr.Image(value=load_sample_frame("Drone Video of African Wildlife Wild Botswan.mp4"), label="Sample Video Frame")
|
100 |
use_sample_button = gr.Button("Use Sample Video")
|
101 |
progress_bar = gr.Progress()
|
102 |
|
103 |
processed_frames = gr.State([])
|
|
|
104 |
|
105 |
def process_and_update(video, target):
|
106 |
-
frames, error = process_video(video, target, progress_bar)
|
107 |
if frames is not None:
|
108 |
-
|
109 |
-
|
|
|
110 |
|
111 |
def update_frame(frame_index, frames):
|
112 |
if frames and 0 <= frame_index < len(frames):
|
@@ -115,7 +143,7 @@ def gradio_app():
|
|
115 |
|
116 |
video_input.upload(process_and_update,
|
117 |
inputs=[video_input, target_input],
|
118 |
-
outputs=[processed_frames, output_image, error_output, frame_slider])
|
119 |
|
120 |
frame_slider.change(update_frame,
|
121 |
inputs=[frame_slider, processed_frames],
|
@@ -127,7 +155,7 @@ def gradio_app():
|
|
127 |
|
128 |
use_sample_button.click(use_sample_video,
|
129 |
inputs=None,
|
130 |
-
outputs=[processed_frames, output_image, error_output, frame_slider])
|
131 |
|
132 |
return app
|
133 |
|
|
|
5 |
from transformers import Owlv2Processor, Owlv2ForObjectDetection
|
6 |
import numpy as np
|
7 |
import os
|
8 |
+
import matplotlib.pyplot as plt
|
9 |
+
from io import BytesIO
|
10 |
|
11 |
# Check if CUDA is available, otherwise use CPU
|
12 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
|
|
26 |
color_map = {target: "red"}
|
27 |
|
28 |
try:
|
29 |
+
font = ImageFont.truetype("arial.ttf", 30)
|
30 |
except IOError:
|
31 |
font = ImageFont.load_default()
|
32 |
|
|
|
34 |
text = texts[i]
|
35 |
boxes, scores, labels = results[i]["boxes"], results[i]["scores"], results[i]["labels"]
|
36 |
|
37 |
+
max_score = 0
|
38 |
for box, score, label in zip(boxes, scores, labels):
|
39 |
if score.item() >= 0.25:
|
40 |
box = [round(i, 2) for i in box.tolist()]
|
|
|
42 |
confidence = round(score.item(), 3)
|
43 |
annotation = f"{object_label}: {confidence}"
|
44 |
|
45 |
+
draw.rectangle(box, outline=color_map.get(object_label, "red"), width=4)
|
46 |
+
text_position = (box[0], box[1] - 30)
|
47 |
draw.text(text_position, annotation, fill="white", font=font)
|
48 |
|
49 |
+
max_score = max(max_score, confidence)
|
50 |
+
|
51 |
+
return image, max_score
|
52 |
|
53 |
def process_video(video_path, target, progress=gr.Progress()):
|
54 |
if video_path is None:
|
55 |
+
return None, None, "Error: No video uploaded"
|
56 |
|
57 |
if not os.path.exists(video_path):
|
58 |
+
return None, None, f"Error: Video file not found at {video_path}"
|
59 |
|
60 |
cap = cv2.VideoCapture(video_path)
|
61 |
if not cap.isOpened():
|
62 |
+
return None, None, f"Error: Unable to open video file at {video_path}"
|
63 |
|
64 |
frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
65 |
original_fps = int(cap.get(cv2.CAP_PROP_FPS))
|
66 |
output_fps = 3
|
67 |
+
frame_duration = 1 / output_fps
|
68 |
+
video_duration = frame_count / original_fps
|
69 |
|
70 |
processed_frames = []
|
71 |
+
frame_scores = []
|
72 |
|
73 |
+
for time in progress.tqdm(np.arange(0, video_duration, frame_duration)):
|
74 |
+
frame_number = int(time * original_fps)
|
75 |
+
cap.set(cv2.CAP_PROP_POS_FRAMES, frame_number)
|
76 |
ret, img = cap.read()
|
77 |
if not ret:
|
78 |
break
|
79 |
|
80 |
pil_img = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
|
81 |
+
annotated_img, max_score = detect_objects_in_frame(pil_img, target)
|
82 |
processed_frames.append(np.array(annotated_img))
|
83 |
+
frame_scores.append(max_score)
|
84 |
|
85 |
cap.release()
|
86 |
+
return processed_frames, frame_scores, None
|
87 |
+
|
88 |
+
def create_heatmap(frame_scores):
|
89 |
+
plt.figure(figsize=(10, 2))
|
90 |
+
plt.imshow([frame_scores], cmap='hot', aspect='auto')
|
91 |
+
plt.colorbar(label='Confidence')
|
92 |
+
plt.title('Object Detection Heatmap')
|
93 |
+
plt.xlabel('Frame')
|
94 |
+
plt.yticks([])
|
95 |
+
plt.tight_layout()
|
96 |
+
|
97 |
+
buf = BytesIO()
|
98 |
+
plt.savefig(buf, format='png')
|
99 |
+
buf.seek(0)
|
100 |
+
plt.close()
|
101 |
+
|
102 |
+
return buf
|
103 |
|
104 |
def load_sample_frame(video_path):
|
105 |
cap = cv2.VideoCapture(video_path)
|
|
|
120 |
target_input = gr.Textbox(label="Target Object", value="Elephant")
|
121 |
frame_slider = gr.Slider(minimum=0, maximum=100, step=1, label="Frame", value=0)
|
122 |
output_image = gr.Image(label="Processed Frame")
|
123 |
+
heatmap_output = gr.Image(label="Detection Heatmap")
|
124 |
error_output = gr.Textbox(label="Error Messages", visible=False)
|
125 |
sample_video_frame = gr.Image(value=load_sample_frame("Drone Video of African Wildlife Wild Botswan.mp4"), label="Sample Video Frame")
|
126 |
use_sample_button = gr.Button("Use Sample Video")
|
127 |
progress_bar = gr.Progress()
|
128 |
|
129 |
processed_frames = gr.State([])
|
130 |
+
frame_scores = gr.State([])
|
131 |
|
132 |
def process_and_update(video, target):
|
133 |
+
frames, scores, error = process_video(video, target, progress_bar)
|
134 |
if frames is not None:
|
135 |
+
heatmap = create_heatmap(scores)
|
136 |
+
return frames, scores, frames[0], heatmap, error, gr.Slider(maximum=len(frames) - 1, value=0)
|
137 |
+
return None, None, None, None, error, gr.Slider(maximum=100, value=0)
|
138 |
|
139 |
def update_frame(frame_index, frames):
|
140 |
if frames and 0 <= frame_index < len(frames):
|
|
|
143 |
|
144 |
video_input.upload(process_and_update,
|
145 |
inputs=[video_input, target_input],
|
146 |
+
outputs=[processed_frames, frame_scores, output_image, heatmap_output, error_output, frame_slider])
|
147 |
|
148 |
frame_slider.change(update_frame,
|
149 |
inputs=[frame_slider, processed_frames],
|
|
|
155 |
|
156 |
use_sample_button.click(use_sample_video,
|
157 |
inputs=None,
|
158 |
+
outputs=[processed_frames, frame_scores, output_image, heatmap_output, error_output, frame_slider])
|
159 |
|
160 |
return app
|
161 |
|