Update app.py
Browse files
app.py
CHANGED
@@ -6,7 +6,6 @@ from transformers import Owlv2Processor, Owlv2ForObjectDetection
|
|
6 |
import numpy as np
|
7 |
import os
|
8 |
import matplotlib.pyplot as plt
|
9 |
-
from io import BytesIO
|
10 |
import tempfile
|
11 |
import shutil
|
12 |
|
@@ -24,7 +23,6 @@ except RuntimeError:
|
|
24 |
device = torch.device("cpu")
|
25 |
model = model.to(device)
|
26 |
|
27 |
-
|
28 |
def process_video(video_path, target, progress=gr.Progress()):
|
29 |
if video_path is None:
|
30 |
return None, None, "Error: No video uploaded"
|
@@ -46,16 +44,7 @@ def process_video(video_path, target, progress=gr.Progress()):
|
|
46 |
temp_dir = tempfile.mkdtemp()
|
47 |
frame_paths = []
|
48 |
|
49 |
-
|
50 |
-
try:
|
51 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
52 |
-
model.to(device).half() # Convert model to half precision
|
53 |
-
except RuntimeError:
|
54 |
-
print("GPU out of memory, falling back to CPU")
|
55 |
-
device = torch.device("cpu")
|
56 |
-
model.to(device)
|
57 |
-
|
58 |
-
batch_size = 1
|
59 |
batch_frames = []
|
60 |
batch_indices = []
|
61 |
|
@@ -67,8 +56,8 @@ def process_video(video_path, target, progress=gr.Progress()):
|
|
67 |
break
|
68 |
|
69 |
# Resize the frame
|
70 |
-
|
71 |
-
pil_img = Image.fromarray(cv2.cvtColor(
|
72 |
|
73 |
batch_frames.append(pil_img)
|
74 |
batch_indices.append(i)
|
@@ -87,42 +76,36 @@ def process_video(video_path, target, progress=gr.Progress()):
|
|
87 |
draw = ImageDraw.Draw(pil_img)
|
88 |
max_score = 0
|
89 |
|
90 |
-
try:
|
91 |
-
font = ImageFont.truetype("arial.ttf", 20)
|
92 |
-
except IOError:
|
93 |
-
font = ImageFont.load_default()
|
94 |
-
|
95 |
boxes, scores, labels = result["boxes"], result["scores"], result["labels"]
|
96 |
|
97 |
-
for box, score, label in zip(boxes, scores, labels):
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
|
104 |
-
|
105 |
-
|
106 |
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
|
120 |
-
|
121 |
-
|
122 |
|
123 |
-
|
124 |
|
125 |
-
# Save frame to disk
|
126 |
frame_path = os.path.join(temp_dir, f"frame_{batch_indices[idx]:04d}.png")
|
127 |
pil_img.save(frame_path)
|
128 |
frame_paths.append(frame_path)
|
@@ -146,13 +129,11 @@ def create_heatmap(frame_scores, current_frame):
|
|
146 |
plt.xlabel('Frame', fontsize=12)
|
147 |
plt.yticks([])
|
148 |
|
149 |
-
# Add more frame numbers on x-axis
|
150 |
num_frames = len(frame_scores)
|
151 |
-
step = max(1, num_frames // 20)
|
152 |
frame_numbers = range(0, num_frames, step)
|
153 |
plt.xticks(frame_numbers, [str(i) for i in frame_numbers], rotation=45, ha='right')
|
154 |
|
155 |
-
# Add vertical line for current frame
|
156 |
plt.axvline(x=current_frame, color='blue', linestyle='--', linewidth=2)
|
157 |
|
158 |
plt.tight_layout()
|
@@ -234,7 +215,7 @@ def gradio_app():
|
|
234 |
|
235 |
if __name__ == "__main__":
|
236 |
app = gradio_app()
|
237 |
-
app.launch(
|
238 |
|
239 |
# Cleanup temporary files
|
240 |
def cleanup():
|
|
|
6 |
import numpy as np
|
7 |
import os
|
8 |
import matplotlib.pyplot as plt
|
|
|
9 |
import tempfile
|
10 |
import shutil
|
11 |
|
|
|
23 |
device = torch.device("cpu")
|
24 |
model = model.to(device)
|
25 |
|
|
|
26 |
def process_video(video_path, target, progress=gr.Progress()):
|
27 |
if video_path is None:
|
28 |
return None, None, "Error: No video uploaded"
|
|
|
44 |
temp_dir = tempfile.mkdtemp()
|
45 |
frame_paths = []
|
46 |
|
47 |
+
batch_size = 4 # Process 4 frames at a time
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
batch_frames = []
|
49 |
batch_indices = []
|
50 |
|
|
|
56 |
break
|
57 |
|
58 |
# Resize the frame
|
59 |
+
img_resized = cv2.resize(img, (640, 360))
|
60 |
+
pil_img = Image.fromarray(cv2.cvtColor(img_resized, cv2.COLOR_BGR2RGB))
|
61 |
|
62 |
batch_frames.append(pil_img)
|
63 |
batch_indices.append(i)
|
|
|
76 |
draw = ImageDraw.Draw(pil_img)
|
77 |
max_score = 0
|
78 |
|
|
|
|
|
|
|
|
|
|
|
79 |
boxes, scores, labels = result["boxes"], result["scores"], result["labels"]
|
80 |
|
81 |
+
for box, score, label in zip(boxes, scores, labels):
|
82 |
+
if score.item() >= 0.5:
|
83 |
+
box = [round(i, 2) for i in box.tolist()]
|
84 |
+
object_label = target
|
85 |
+
confidence = round(score.item(), 3)
|
86 |
+
annotation = f"{object_label}: {confidence}"
|
87 |
|
88 |
+
# Increase line width for the bounding box
|
89 |
+
draw.rectangle(box, outline="red", width=4)
|
90 |
|
91 |
+
# Increase font size and change color to red
|
92 |
+
font_size = 30
|
93 |
+
try:
|
94 |
+
font = ImageFont.truetype("arial.ttf", font_size)
|
95 |
+
except IOError:
|
96 |
+
font = ImageFont.load_default()
|
97 |
|
98 |
+
text_position = (box[0], box[1] - font_size - 5)
|
99 |
+
|
100 |
+
# Add a semi-transparent background for better text visibility
|
101 |
+
text_bbox = draw.textbbox(text_position, annotation, font=font)
|
102 |
+
draw.rectangle(text_bbox, fill=(0, 0, 0, 128))
|
103 |
|
104 |
+
# Draw text in red
|
105 |
+
draw.text(text_position, annotation, fill="red", font=font)
|
106 |
|
107 |
+
max_score = max(max_score, confidence)
|
108 |
|
|
|
109 |
frame_path = os.path.join(temp_dir, f"frame_{batch_indices[idx]:04d}.png")
|
110 |
pil_img.save(frame_path)
|
111 |
frame_paths.append(frame_path)
|
|
|
129 |
plt.xlabel('Frame', fontsize=12)
|
130 |
plt.yticks([])
|
131 |
|
|
|
132 |
num_frames = len(frame_scores)
|
133 |
+
step = max(1, num_frames // 20)
|
134 |
frame_numbers = range(0, num_frames, step)
|
135 |
plt.xticks(frame_numbers, [str(i) for i in frame_numbers], rotation=45, ha='right')
|
136 |
|
|
|
137 |
plt.axvline(x=current_frame, color='blue', linestyle='--', linewidth=2)
|
138 |
|
139 |
plt.tight_layout()
|
|
|
215 |
|
216 |
if __name__ == "__main__":
|
217 |
app = gradio_app()
|
218 |
+
app.launch()
|
219 |
|
220 |
# Cleanup temporary files
|
221 |
def cleanup():
|