Update app.py
Browse files
app.py
CHANGED
|
@@ -6,7 +6,6 @@ from transformers import Owlv2Processor, Owlv2ForObjectDetection
|
|
| 6 |
import numpy as np
|
| 7 |
import os
|
| 8 |
import matplotlib.pyplot as plt
|
| 9 |
-
from io import BytesIO
|
| 10 |
import tempfile
|
| 11 |
import shutil
|
| 12 |
|
|
@@ -24,7 +23,6 @@ except RuntimeError:
|
|
| 24 |
device = torch.device("cpu")
|
| 25 |
model = model.to(device)
|
| 26 |
|
| 27 |
-
|
| 28 |
def process_video(video_path, target, progress=gr.Progress()):
|
| 29 |
if video_path is None:
|
| 30 |
return None, None, "Error: No video uploaded"
|
|
@@ -46,16 +44,7 @@ def process_video(video_path, target, progress=gr.Progress()):
|
|
| 46 |
temp_dir = tempfile.mkdtemp()
|
| 47 |
frame_paths = []
|
| 48 |
|
| 49 |
-
|
| 50 |
-
try:
|
| 51 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 52 |
-
model.to(device).half() # Convert model to half precision
|
| 53 |
-
except RuntimeError:
|
| 54 |
-
print("GPU out of memory, falling back to CPU")
|
| 55 |
-
device = torch.device("cpu")
|
| 56 |
-
model.to(device)
|
| 57 |
-
|
| 58 |
-
batch_size = 1
|
| 59 |
batch_frames = []
|
| 60 |
batch_indices = []
|
| 61 |
|
|
@@ -67,8 +56,8 @@ def process_video(video_path, target, progress=gr.Progress()):
|
|
| 67 |
break
|
| 68 |
|
| 69 |
# Resize the frame
|
| 70 |
-
|
| 71 |
-
pil_img = Image.fromarray(cv2.cvtColor(
|
| 72 |
|
| 73 |
batch_frames.append(pil_img)
|
| 74 |
batch_indices.append(i)
|
|
@@ -87,42 +76,36 @@ def process_video(video_path, target, progress=gr.Progress()):
|
|
| 87 |
draw = ImageDraw.Draw(pil_img)
|
| 88 |
max_score = 0
|
| 89 |
|
| 90 |
-
try:
|
| 91 |
-
font = ImageFont.truetype("arial.ttf", 20)
|
| 92 |
-
except IOError:
|
| 93 |
-
font = ImageFont.load_default()
|
| 94 |
-
|
| 95 |
boxes, scores, labels = result["boxes"], result["scores"], result["labels"]
|
| 96 |
|
| 97 |
-
for box, score, label in zip(boxes, scores, labels):
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
|
| 104 |
-
|
| 105 |
-
|
| 106 |
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
|
| 120 |
-
|
| 121 |
-
|
| 122 |
|
| 123 |
-
|
| 124 |
|
| 125 |
-
# Save frame to disk
|
| 126 |
frame_path = os.path.join(temp_dir, f"frame_{batch_indices[idx]:04d}.png")
|
| 127 |
pil_img.save(frame_path)
|
| 128 |
frame_paths.append(frame_path)
|
|
@@ -146,13 +129,11 @@ def create_heatmap(frame_scores, current_frame):
|
|
| 146 |
plt.xlabel('Frame', fontsize=12)
|
| 147 |
plt.yticks([])
|
| 148 |
|
| 149 |
-
# Add more frame numbers on x-axis
|
| 150 |
num_frames = len(frame_scores)
|
| 151 |
-
step = max(1, num_frames // 20)
|
| 152 |
frame_numbers = range(0, num_frames, step)
|
| 153 |
plt.xticks(frame_numbers, [str(i) for i in frame_numbers], rotation=45, ha='right')
|
| 154 |
|
| 155 |
-
# Add vertical line for current frame
|
| 156 |
plt.axvline(x=current_frame, color='blue', linestyle='--', linewidth=2)
|
| 157 |
|
| 158 |
plt.tight_layout()
|
|
@@ -234,7 +215,7 @@ def gradio_app():
|
|
| 234 |
|
| 235 |
if __name__ == "__main__":
|
| 236 |
app = gradio_app()
|
| 237 |
-
app.launch(
|
| 238 |
|
| 239 |
# Cleanup temporary files
|
| 240 |
def cleanup():
|
|
|
|
| 6 |
import numpy as np
|
| 7 |
import os
|
| 8 |
import matplotlib.pyplot as plt
|
|
|
|
| 9 |
import tempfile
|
| 10 |
import shutil
|
| 11 |
|
|
|
|
| 23 |
device = torch.device("cpu")
|
| 24 |
model = model.to(device)
|
| 25 |
|
|
|
|
| 26 |
def process_video(video_path, target, progress=gr.Progress()):
|
| 27 |
if video_path is None:
|
| 28 |
return None, None, "Error: No video uploaded"
|
|
|
|
| 44 |
temp_dir = tempfile.mkdtemp()
|
| 45 |
frame_paths = []
|
| 46 |
|
| 47 |
+
batch_size = 4 # Process 4 frames at a time
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
batch_frames = []
|
| 49 |
batch_indices = []
|
| 50 |
|
|
|
|
| 56 |
break
|
| 57 |
|
| 58 |
# Resize the frame
|
| 59 |
+
img_resized = cv2.resize(img, (640, 360))
|
| 60 |
+
pil_img = Image.fromarray(cv2.cvtColor(img_resized, cv2.COLOR_BGR2RGB))
|
| 61 |
|
| 62 |
batch_frames.append(pil_img)
|
| 63 |
batch_indices.append(i)
|
|
|
|
| 76 |
draw = ImageDraw.Draw(pil_img)
|
| 77 |
max_score = 0
|
| 78 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 79 |
boxes, scores, labels = result["boxes"], result["scores"], result["labels"]
|
| 80 |
|
| 81 |
+
for box, score, label in zip(boxes, scores, labels):
|
| 82 |
+
if score.item() >= 0.5:
|
| 83 |
+
box = [round(i, 2) for i in box.tolist()]
|
| 84 |
+
object_label = target
|
| 85 |
+
confidence = round(score.item(), 3)
|
| 86 |
+
annotation = f"{object_label}: {confidence}"
|
| 87 |
|
| 88 |
+
# Increase line width for the bounding box
|
| 89 |
+
draw.rectangle(box, outline="red", width=4)
|
| 90 |
|
| 91 |
+
# Increase font size and change color to red
|
| 92 |
+
font_size = 30
|
| 93 |
+
try:
|
| 94 |
+
font = ImageFont.truetype("arial.ttf", font_size)
|
| 95 |
+
except IOError:
|
| 96 |
+
font = ImageFont.load_default()
|
| 97 |
|
| 98 |
+
text_position = (box[0], box[1] - font_size - 5)
|
| 99 |
+
|
| 100 |
+
# Add a semi-transparent background for better text visibility
|
| 101 |
+
text_bbox = draw.textbbox(text_position, annotation, font=font)
|
| 102 |
+
draw.rectangle(text_bbox, fill=(0, 0, 0, 128))
|
| 103 |
|
| 104 |
+
# Draw text in red
|
| 105 |
+
draw.text(text_position, annotation, fill="red", font=font)
|
| 106 |
|
| 107 |
+
max_score = max(max_score, confidence)
|
| 108 |
|
|
|
|
| 109 |
frame_path = os.path.join(temp_dir, f"frame_{batch_indices[idx]:04d}.png")
|
| 110 |
pil_img.save(frame_path)
|
| 111 |
frame_paths.append(frame_path)
|
|
|
|
| 129 |
plt.xlabel('Frame', fontsize=12)
|
| 130 |
plt.yticks([])
|
| 131 |
|
|
|
|
| 132 |
num_frames = len(frame_scores)
|
| 133 |
+
step = max(1, num_frames // 20)
|
| 134 |
frame_numbers = range(0, num_frames, step)
|
| 135 |
plt.xticks(frame_numbers, [str(i) for i in frame_numbers], rotation=45, ha='right')
|
| 136 |
|
|
|
|
| 137 |
plt.axvline(x=current_frame, color='blue', linestyle='--', linewidth=2)
|
| 138 |
|
| 139 |
plt.tight_layout()
|
|
|
|
| 215 |
|
| 216 |
if __name__ == "__main__":
|
| 217 |
app = gradio_app()
|
| 218 |
+
app.launch()
|
| 219 |
|
| 220 |
# Cleanup temporary files
|
| 221 |
def cleanup():
|