import torch import torch.nn as nn import torch.optim as optim import torch.nn.functional as F import numpy as np from sklearn.preprocessing import MinMaxScaler class VAE(nn.Module): def __init__(self, input_size, latent_dim=32): super(VAE, self).__init__() # Encoder self.encoder = nn.Sequential( nn.Linear(input_size, 256), nn.ReLU(), nn.Linear(256, 128), nn.ReLU(), nn.Linear(128, 64), nn.ReLU() ) self.fc_mu = nn.Linear(64, latent_dim) self.fc_logvar = nn.Linear(64, latent_dim) # Decoder self.decoder = nn.Sequential( nn.Linear(latent_dim, 64), nn.ReLU(), nn.Linear(64, 128), nn.ReLU(), nn.Linear(128, 256), nn.ReLU(), nn.Linear(256, input_size) ) def encode(self, x): h = self.encoder(x) return self.fc_mu(h), self.fc_logvar(h) def reparameterize(self, mu, logvar): std = torch.exp(0.5 * logvar) eps = torch.randn_like(std) return mu + eps * std def decode(self, z): return self.decoder(z) def forward(self, x): batch_size, seq_len, _ = x.size() x = x.view(batch_size * seq_len, -1) mu, logvar = self.encode(x) z = self.reparameterize(mu, logvar) decoded = self.decode(z) return decoded.view(batch_size, seq_len, -1), mu, logvar def vae_loss(recon_x, x, mu, logvar): BCE = F.mse_loss(recon_x, x, reduction='sum') KLD = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp()) return BCE + KLD def anomaly_detection(X_embeddings, X_posture, X_voice, epochs=200, patience=5): device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # Normalize posture scaler_posture = MinMaxScaler() X_posture_scaled = scaler_posture.fit_transform(X_posture.reshape(-1, 1)) # Process facial embeddings X_embeddings = torch.FloatTensor(X_embeddings).to(device) if X_embeddings.dim() == 2: X_embeddings = X_embeddings.unsqueeze(0) # Process posture X_posture_scaled = torch.FloatTensor(X_posture_scaled).to(device) if X_posture_scaled.dim() == 2: X_posture_scaled = X_posture_scaled.unsqueeze(0) # Process voice embeddings X_voice = torch.FloatTensor(X_voice).to(device) if X_voice.dim() == 2: X_voice = X_voice.unsqueeze(0) model_embeddings = VAE(input_size=X_embeddings.shape[2]).to(device) model_posture = VAE(input_size=X_posture_scaled.shape[2]).to(device) model_voice = VAE(input_size=X_voice.shape[2]).to(device) optimizer_embeddings = optim.Adam(model_embeddings.parameters()) optimizer_posture = optim.Adam(model_posture.parameters()) optimizer_voice = optim.Adam(model_voice.parameters()) # Train models for epoch in range(int(epochs)): # Ensure epochs is an integer for model, optimizer, X in [(model_embeddings, optimizer_embeddings, X_embeddings), (model_posture, optimizer_posture, X_posture_scaled), (model_voice, optimizer_voice, X_voice)]: model.train() optimizer.zero_grad() recon_batch, mu, logvar = model(X) loss = vae_loss(recon_batch, X, mu, logvar) loss.backward() optimizer.step() # Compute reconstruction error for embeddings, posture, and voice model_embeddings.eval() model_posture.eval() model_voice.eval() with torch.no_grad(): recon_embeddings, _, _ = model_embeddings(X_embeddings) recon_posture, _, _ = model_posture(X_posture_scaled) recon_voice, _, _ = model_voice(X_voice) mse_embeddings = F.mse_loss(recon_embeddings, X_embeddings, reduction='none').mean(dim=2).cpu().numpy().squeeze() mse_posture = F.mse_loss(recon_posture, X_posture_scaled, reduction='none').mean(dim=2).cpu().numpy().squeeze() mse_voice = F.mse_loss(recon_voice, X_voice, reduction='none').mean(dim=2).cpu().numpy().squeeze() return mse_embeddings, mse_posture, mse_voice def determine_anomalies(mse_values, threshold): mean = np.mean(mse_values) std = np.std(mse_values) anomalies = mse_values > (mean + threshold * std) return anomalies