import torch import numpy as np from facenet_pytorch import InceptionResnetV1 from sklearn.cluster import DBSCAN import os import shutil import mediapipe as mp import cv2 device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = InceptionResnetV1(pretrained='vggface2').eval().to(device) def get_face_embedding(face_img): face_tensor = torch.tensor(face_img).permute(2, 0, 1).unsqueeze(0).float() / 255 face_tensor = (face_tensor - 0.5) / 0.5 face_tensor = face_tensor.to(device) with torch.no_grad(): embedding = model(face_tensor) return embedding.cpu().numpy().flatten() def cluster_faces(embeddings): if len(embeddings) < 2: print("Not enough faces for clustering. Assigning all to one cluster.") return np.zeros(len(embeddings), dtype=int) X = np.stack(embeddings) dbscan = DBSCAN(eps=0.3, min_samples=5, metric='cosine') clusters = dbscan.fit_predict(X) if np.all(clusters == -1): print("DBSCAN assigned all to noise. Considering as one cluster.") return np.zeros(len(embeddings), dtype=int) return clusters def organize_faces_by_person(embeddings_by_frame, clusters, aligned_faces_folder, organized_faces_folder): for (frame_num, embedding), cluster in zip(embeddings_by_frame.items(), clusters): person_folder = os.path.join(organized_faces_folder, f"person_{cluster}") os.makedirs(person_folder, exist_ok=True) src = os.path.join(aligned_faces_folder, f"frame_{frame_num}_face.jpg") dst = os.path.join(person_folder, f"frame_{frame_num}_face.jpg") shutil.copy(src, dst) def draw_facial_landmarks(image, landmarks): mp_drawing = mp.solutions.drawing_utils # Adjust these values to make the drawing thinner and less obtrusive landmark_drawing_spec = mp_drawing.DrawingSpec(color=(0, 255, 0), thickness=1, circle_radius=1) if landmarks: for landmark in landmarks.landmark: x = int(landmark.x * image.shape[1]) y = int(landmark.y * image.shape[0]) cv2.circle(image, (x, y), landmark_drawing_spec.circle_radius, landmark_drawing_spec.color, landmark_drawing_spec.thickness) return image