def frame_to_timecode(frame_num, total_frames, duration): total_seconds = (frame_num / total_frames) * duration hours = int(total_seconds // 3600) minutes = int((total_seconds % 3600) // 60) seconds = int(total_seconds % 60) milliseconds = int((total_seconds - int(total_seconds)) * 1000) return f"{hours:02d}:{minutes:02d}:{seconds:02d}.{milliseconds:03d}" def seconds_to_timecode(seconds): hours = int(seconds // 3600) minutes = int((seconds % 3600) // 60) seconds = int(seconds % 60) return f"{hours:02d}:{minutes:02d}:{seconds:02d}" def timecode_to_seconds(timecode): h, m, s = map(int, timecode.split(':')) return h * 3600 + m * 60 + s def add_timecode_to_image(image, timecode): from PIL import Image, ImageDraw, ImageFont import numpy as np img_pil = Image.fromarray(image) draw = ImageDraw.Draw(img_pil) font = ImageFont.truetype("arial.ttf", 15) draw.text((10, 10), timecode, (255, 0, 0), font=font) return np.array(img_pil) def add_timecode_to_image_body(image, timecode): from PIL import Image, ImageDraw, ImageFont import numpy as np img_pil = Image.fromarray(image) draw = ImageDraw.Draw(img_pil) font = ImageFont.truetype("arial.ttf", 100) draw.text((10, 10), timecode, (255, 0, 0), font=font) return np.array(img_pil) def create_annotated_video(video_path, df, mse_embeddings, largest_cluster, output_path): video = cv2.VideoCapture(video_path) fps = video.get(cv2.CAP_PROP_FPS) width = int(video.get(cv2.CAP_PROP_FRAME_WIDTH)) height = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT)) fourcc = cv2.VideoWriter_fourcc(*'mp4v') out = cv2.VideoWriter(output_path, fourcc, fps, (width, height)) frame_number = 0 while True: ret, frame = video.read() if not ret: break # Detect face and draw bounding box boxes, _ = mtcnn.detect(frame) if boxes is not None and len(boxes) > 0: box = boxes[0] cv2.rectangle(frame, (int(box[0]), int(box[1])), (int(box[2]), int(box[3])), (0, 255, 0), 2) # Draw facial landmarks face_mesh_results = face_mesh.process(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)) if face_mesh_results.multi_face_landmarks: for face_landmarks in face_mesh_results.multi_face_landmarks: mp_drawing.draw_landmarks( image=frame, landmark_list=face_landmarks, connections=mp_face_mesh.FACEMESH_TESSELATION, landmark_drawing_spec=None, connection_drawing_spec=mp_drawing_styles.get_default_face_mesh_tesselation_style() ) # Add MSE annotation if frame_number in df['Frame'].values: mse = mse_embeddings[df['Frame'] == frame_number].iloc[0] cv2.putText(frame, f"MSE: {mse:.4f}", (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2) out.write(frame) frame_number += 1 video.release() out.release()