import os import numpy as np import torch from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, WhisperFeatureExtractor from moviepy.editor import VideoFileClip, AudioFileClip import nltk nltk.download('punkt', quiet=True) from nltk.tokenize import sent_tokenize def transcribe(video_file, transcribe_to_text=True, transcribe_to_srt=True, target_language='en'): device = "cuda:0" if torch.cuda.is_available() else "cpu" torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 model_id = "openai/whisper-large-v3" model = AutoModelForSpeechSeq2Seq.from_pretrained( model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True ) model.to(device) processor = AutoProcessor.from_pretrained(model_id) feature_extractor = WhisperFeatureExtractor.from_pretrained(model_id) video = VideoFileClip(video_file) audio = video.audio duration = audio.duration chunk_duration = 60 n_chunks = int(np.ceil(duration / chunk_duration)) full_transcription = "" for i in range(n_chunks): start_time = i * chunk_duration end_time = min((i + 1) * chunk_duration, duration) audio_chunk = audio.subclip(start_time, end_time) temp_file_path = f"temp_audio_chunk_{i}.wav" audio_chunk.write_audiofile(temp_file_path, codec='pcm_s16le') sound_array = AudioFileClip(temp_file_path).to_soundarray(fps=16000) if sound_array.ndim > 1: sound_array = np.mean(sound_array, axis=1) input_features = feature_extractor(sound_array, sampling_rate=16000, return_tensors="pt").input_features input_features = input_features.to(device=device, dtype=torch_dtype) with torch.no_grad(): if target_language: model.config.forced_decoder_ids = processor.get_decoder_prompt_ids(language=target_language, task="transcribe") generated_ids = model.generate(input_features, max_length=448) transcription = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] full_transcription += transcription + " " os.remove(temp_file_path) print(f"Processed chunk {i + 1}/{n_chunks}") # Split the transcription into sentences sentences = sent_tokenize(full_transcription.strip()) # Estimate time for each sentence based on its length relative to the total transcription total_chars = sum(len(s) for s in sentences) sentence_times = [] current_time = 0 for sentence in sentences: sentence_duration = (len(sentence) / total_chars) * duration sentence_times.append((current_time, current_time + sentence_duration)) current_time += sentence_duration output = "" if transcribe_to_text: output += "Text Transcription:\n" + full_transcription + "\n\n" if transcribe_to_srt: output += "SRT Transcription:\n" for i, (sentence, (start, end)) in enumerate(zip(sentences, sentence_times), 1): output += f"{i}\n{format_time(start)} --> {format_time(end)}\n{sentence}\n\n" return output def format_time(seconds): m, s = divmod(seconds, 60) h, m = divmod(m, 60) return f"{int(h):02d}:{int(m):02d}:{s:06.3f}".replace('.', ',')