import os import cv2 import numpy as np import torch import torch.nn as nn import torch.optim as optim import torchvision from facenet_pytorch import InceptionResnetV1, MTCNN import mediapipe as mp from fer import FER from sklearn.cluster import KMeans from sklearn.preprocessing import StandardScaler, MinMaxScaler import umap import pandas as pd import matplotlib.pyplot as plt from matplotlib.ticker import MaxNLocator from moviepy.editor import VideoFileClip from PIL import Image import gradio as gr import tempfile import shutil import subprocess import fractions # Suppress TensorFlow warnings os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' import tensorflow as tf tf.get_logger().setLevel('ERROR') # Initialize models and other global variables device = 'cuda' mtcnn = MTCNN(keep_all=False, device=device, thresholds=[0.999, 0.999, 0.999], min_face_size=100, selection_method='largest') model = InceptionResnetV1(pretrained='vggface2').eval().to(device) mp_face_mesh = mp.solutions.face_mesh face_mesh = mp_face_mesh.FaceMesh(static_image_mode=False, max_num_faces=1, min_detection_confidence=0.5) emotion_detector = FER(mtcnn=False) def frame_to_timecode(frame_num, original_fps, desired_fps): total_seconds = frame_num / original_fps hours = int(total_seconds // 3600) minutes = int((total_seconds % 3600) // 60) seconds = int(total_seconds % 60) milliseconds = int((total_seconds - int(total_seconds)) * 1000) return f"{hours:02d}:{minutes:02d}:{seconds:02d}.{milliseconds:03d}" def get_face_embedding_and_emotion(face_img): face_tensor = torch.tensor(face_img).permute(2, 0, 1).unsqueeze(0).float() / 255 face_tensor = (face_tensor - 0.5) / 0.5 face_tensor = face_tensor.to(device) with torch.no_grad(): embedding = model(face_tensor) emotions = emotion_detector.detect_emotions(face_img) if emotions: emotion_dict = emotions[0]['emotions'] else: emotion_dict = {e: 0 for e in ['angry', 'disgust', 'fear', 'happy', 'sad', 'surprise', 'neutral']} return embedding.cpu().numpy().flatten(), emotion_dict def alignFace(img): img_raw = img.copy() results = face_mesh.process(cv2.cvtColor(img, cv2.COLOR_BGR2RGB)) if not results.multi_face_landmarks: return None landmarks = results.multi_face_landmarks[0].landmark left_eye = np.array([[landmarks[33].x, landmarks[33].y], [landmarks[160].x, landmarks[160].y], [landmarks[158].x, landmarks[158].y], [landmarks[144].x, landmarks[144].y], [landmarks[153].x, landmarks[153].y], [landmarks[145].x, landmarks[145].y]]) right_eye = np.array([[landmarks[362].x, landmarks[362].y], [landmarks[385].x, landmarks[385].y], [landmarks[387].x, landmarks[387].y], [landmarks[263].x, landmarks[263].y], [landmarks[373].x, landmarks[373].y], [landmarks[380].x, landmarks[380].y]]) left_eye_center = left_eye.mean(axis=0).astype(np.int32) right_eye_center = right_eye.mean(axis=0).astype(np.int32) dY = right_eye_center[1] - left_eye_center[1] dX = right_eye_center[0] - left_eye_center[0] angle = np.degrees(np.arctan2(dY, dX)) desired_angle = 0 angle_diff = desired_angle - angle height, width = img_raw.shape[:2] center = (width // 2, height // 2) rotation_matrix = cv2.getRotationMatrix2D(center, angle_diff, 1) new_img = cv2.warpAffine(img_raw, rotation_matrix, (width, height)) return new_img def extract_frames(video_path, output_folder, desired_fps, progress_callback=None): os.makedirs(output_folder, exist_ok=True) # Load the video clip clip = VideoFileClip(video_path) original_fps = clip.fps duration = clip.duration total_frames = int(duration * original_fps) step = max(1, original_fps / desired_fps) total_frames_to_extract = int(total_frames / step) frame_count = 0 for t in np.arange(0, duration, step / original_fps): # Get the frame at time t frame = clip.get_frame(t) # Convert the frame to PIL Image and save it img = Image.fromarray(frame) img.save(os.path.join(output_folder, f"frame_{frame_count:04d}.jpg")) frame_count += 1 # Report progress if progress_callback: progress = frame_count / total_frames_to_extract progress_callback(progress, f"Extracting frame {frame_count} of {total_frames_to_extract}") if frame_count >= total_frames_to_extract: break clip.close() return frame_count, original_fps def process_frames(frames_folder, aligned_faces_folder, frame_count, progress, batch_size): embeddings_by_frame = {} emotions_by_frame = {} frame_files = sorted([f for f in os.listdir(frames_folder) if f.endswith('.jpg')]) for i in range(0, len(frame_files), batch_size): batch_files = frame_files[i:i + batch_size] batch_frames = [] batch_nums = [] for frame_file in batch_files: frame_num = int(frame_file.split('_')[1].split('.')[0]) frame_path = os.path.join(frames_folder, frame_file) frame = cv2.imread(frame_path) if frame is not None: batch_frames.append(frame) batch_nums.append(frame_num) if batch_frames: # Detect faces in batch batch_boxes, batch_probs = mtcnn.detect(batch_frames) for j, (frame, frame_num, boxes, probs) in enumerate( zip(batch_frames, batch_nums, batch_boxes, batch_probs)): if boxes is not None and len(boxes) > 0 and probs[0] >= 0.99: x1, y1, x2, y2 = [int(b) for b in boxes[0]] face = frame[y1:y2, x1:x2] if face.size > 0: aligned_face = alignFace(face) if aligned_face is not None: aligned_face_resized = cv2.resize(aligned_face, (160, 160)) output_path = os.path.join(aligned_faces_folder, f"frame_{frame_num}_face.jpg") cv2.imwrite(output_path, aligned_face_resized) embedding, emotion = get_face_embedding_and_emotion(aligned_face_resized) embeddings_by_frame[frame_num] = embedding emotions_by_frame[frame_num] = emotion progress((i + len(batch_files)) / frame_count, f"Processing frames {i + 1} to {min(i + len(batch_files), frame_count)} of {frame_count}") return embeddings_by_frame, emotions_by_frame def cluster_embeddings(embeddings): if len(embeddings) < 2: print("Not enough embeddings for clustering. Assigning all to one cluster.") return np.zeros(len(embeddings), dtype=int) n_clusters = min(3, len(embeddings)) # Use at most 3 clusters scaler = StandardScaler() embeddings_scaled = scaler.fit_transform(embeddings) kmeans = KMeans(n_clusters=n_clusters, random_state=42, n_init=10) clusters = kmeans.fit_predict(embeddings_scaled) return clusters def organize_faces_by_person(embeddings_by_frame, clusters, aligned_faces_folder, organized_faces_folder): for (frame_num, embedding), cluster in zip(embeddings_by_frame.items(), clusters): person_folder = os.path.join(organized_faces_folder, f"person_{cluster}") os.makedirs(person_folder, exist_ok=True) src = os.path.join(aligned_faces_folder, f"frame_{frame_num}_face.jpg") dst = os.path.join(person_folder, f"frame_{frame_num}_face.jpg") shutil.copy(src, dst) def save_person_data_to_csv(embeddings_by_frame, emotions_by_frame, clusters, desired_fps, original_fps, output_folder, num_components): emotions = ['angry', 'disgust', 'fear', 'happy', 'sad', 'surprise', 'neutral'] person_data = {} for (frame_num, embedding), (_, emotion_dict), cluster in zip(embeddings_by_frame.items(), emotions_by_frame.items(), clusters): if cluster not in person_data: person_data[cluster] = [] person_data[cluster].append((frame_num, embedding, {e: emotion_dict[e] for e in emotions})) largest_cluster = max(person_data, key=lambda k: len(person_data[k])) data = person_data[largest_cluster] data.sort(key=lambda x: x[0]) frames, embeddings, emotions_data = zip(*data) embeddings_array = np.array(embeddings) np.save(os.path.join(output_folder, 'face_embeddings.npy'), embeddings_array) reducer = umap.UMAP(n_components=num_components, random_state=1) embeddings_reduced = reducer.fit_transform(embeddings) scaler = MinMaxScaler(feature_range=(0, 1)) embeddings_reduced_normalized = scaler.fit_transform(embeddings_reduced) timecodes = [frame_to_timecode(frame, original_fps, desired_fps) for frame in frames] times_in_minutes = [frame / (original_fps * 60) for frame in frames] df_data = { 'Frame': frames, 'Timecode': timecodes, 'Time (Minutes)': times_in_minutes, 'Embedding_Index': range(len(embeddings)) } for i in range(num_components): df_data[f'Comp {i + 1}'] = embeddings_reduced_normalized[:, i] for emotion in emotions: df_data[emotion] = [e[emotion] for e in emotions_data] df = pd.DataFrame(df_data) return df, largest_cluster class LSTMAutoencoder(nn.Module): def __init__(self, input_size, hidden_size=64, num_layers=2): super(LSTMAutoencoder, self).__init__() self.input_size = input_size self.hidden_size = hidden_size self.num_layers = num_layers self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True) self.fc = nn.Linear(hidden_size, input_size) def forward(self, x): outputs, (hidden, _) = self.lstm(x) out = self.fc(outputs) return out def lstm_anomaly_detection(X, feature_columns, num_anomalies=10, epochs=100, batch_size=64): device = 'cuda' if torch.cuda.is_available() else 'cpu' X = torch.FloatTensor(X).to(device) # Ensure X is 3D (batch, sequence, features) if X.dim() == 2: X = X.unsqueeze(0) elif X.dim() == 1: X = X.unsqueeze(0).unsqueeze(2) elif X.dim() > 3: raise ValueError(f"Input X should be 1D, 2D or 3D, but got {X.dim()} dimensions") print(f"X shape after reshaping: {X.shape}") train_size = int(0.85 * X.shape[1]) X_train, X_val = X[:, :train_size, :], X[:, train_size:, :] model = LSTMAutoencoder(input_size=X.shape[2]).to(device) criterion = nn.MSELoss() optimizer = optim.Adam(model.parameters()) for epoch in range(epochs): model.train() optimizer.zero_grad() output_train = model(X_train) loss_train = criterion(output_train, X_train.squeeze(0)) loss_train.backward() optimizer.step() model.eval() with torch.no_grad(): output_val = model(X_val) loss_val = criterion(output_val, X_val.squeeze(0)) model.eval() with torch.no_grad(): reconstructed = model(X).squeeze(0).cpu().numpy() # Compute anomalies for all features mse_all = np.mean(np.power(X.squeeze(0).cpu().numpy() - reconstructed, 2), axis=1) top_indices_all = mse_all.argsort()[-num_anomalies:][::-1] anomalies_all = np.zeros(len(mse_all), dtype=bool) anomalies_all[top_indices_all] = True # Compute anomalies for components only component_columns = [col for col in feature_columns if col.startswith('Comp')] component_indices = [feature_columns.index(col) for col in component_columns] if len(component_indices) > 0: mse_comp = np.mean( np.power(X.squeeze(0).cpu().numpy()[:, component_indices] - reconstructed[:, component_indices], 2), axis=1) else: mse_comp = mse_all # If no components, use all features top_indices_comp = mse_comp.argsort()[-num_anomalies:][::-1] anomalies_comp = np.zeros(len(mse_comp), dtype=bool) anomalies_comp[top_indices_comp] = True return (anomalies_all, mse_all, top_indices_all, anomalies_comp, mse_comp, top_indices_comp, model) def plot_anomaly_scores(df, anomaly_scores, top_indices, title): fig, ax = plt.subplots(figsize=(16, 8)) bars = ax.bar(range(len(df)), anomaly_scores, width=0.8, color='skyblue') for i in top_indices: bars[i].set_color('red') ax.set_xlabel('Timecode') ax.set_ylabel('Anomaly Score') ax.set_title(f'Anomaly Scores Over Time ({title})') ax.xaxis.set_major_locator(MaxNLocator(nbins=100)) ticks = ax.get_xticks() ax.set_xticklabels([df['Timecode'].iloc[int(tick)] if tick >= 0 and tick < len(df) else '' for tick in ticks], rotation=90, ha='right') plt.tight_layout() return fig def plot_emotion(df, emotion, num_anomalies, color): fig, ax = plt.subplots(figsize=(16, 8)) values = df[emotion].values bars = ax.bar(range(len(df)), values, width=0.9, color=color) top_indices = np.argsort(values)[-num_anomalies:][::-1] for i in top_indices: bars[i].set_color('red') ax.set_xlabel('Timecode') ax.set_ylabel(f'{emotion.capitalize()} Score') ax.set_title(f'{emotion.capitalize()} Anomalies Over Time (Top {num_anomalies} in Red)') ax.xaxis.set_major_locator(MaxNLocator(nbins=100)) ticks = ax.get_xticks() ax.set_xticklabels([df['Timecode'].iloc[int(tick)] if tick >= 0 and tick < len(df) else '' for tick in ticks], rotation=90, ha='right') plt.tight_layout() return fig import base64 def get_random_face_sample(organized_faces_folder, largest_cluster, output_folder): person_folder = os.path.join(organized_faces_folder, f"person_{largest_cluster}") face_files = [f for f in os.listdir(person_folder) if f.endswith('.jpg')] if face_files: random_face = np.random.choice(face_files) face_path = os.path.join(person_folder, random_face) output_path = os.path.join(output_folder, "random_face_sample.jpg") # Read the image and resize it to be smaller face_img = cv2.imread(face_path) small_face = cv2.resize(face_img, (100, 100)) # Resize to NxN pixels cv2.imwrite(output_path, small_face) return output_path return None def process_video(video_path, num_anomalies, num_components, desired_fps, batch_size, progress=gr.Progress()): output_folder = "output" os.makedirs(output_folder, exist_ok=True) with tempfile.TemporaryDirectory() as temp_dir: aligned_faces_folder = os.path.join(temp_dir, 'aligned_faces') organized_faces_folder = os.path.join(temp_dir, 'organized_faces') os.makedirs(aligned_faces_folder, exist_ok=True) os.makedirs(organized_faces_folder, exist_ok=True) progress(0.05, "Starting frame extraction") frames_folder = os.path.join(temp_dir, 'extracted_frames') def extraction_progress(percent, message): # Adjust the progress to fit within the 5% to 30% range of the overall process overall_progress = 0.05 + (percent * 0.25) progress(overall_progress, message) frame_count, original_fps = extract_frames(video_path, frames_folder, desired_fps, extraction_progress) progress(0.3, "Processing frames") embeddings_by_frame, emotions_by_frame = process_frames(frames_folder, aligned_faces_folder, frame_count, progress, batch_size) if not embeddings_by_frame: return "No faces were extracted from the video.", None, None, None, None, None, None progress(0.6, "Clustering embeddings") embeddings = list(embeddings_by_frame.values()) clusters = cluster_embeddings(embeddings) progress(0.7, "Organizing faces") organize_faces_by_person(embeddings_by_frame, clusters, aligned_faces_folder, organized_faces_folder) progress(0.8, "Saving person data") df, largest_cluster = save_person_data_to_csv(embeddings_by_frame, emotions_by_frame, clusters, desired_fps, original_fps, temp_dir, num_components) progress(0.9, "Performing anomaly detection") feature_columns = [col for col in df.columns if col not in ['Frame', 'Timecode', 'Time (Minutes)', 'Embedding_Index']] X = df[feature_columns].values print(f"Shape of input data: {X.shape}") print(f"Feature columns: {feature_columns}") try: anomalies_all, anomaly_scores_all, top_indices_all, anomalies_comp, anomaly_scores_comp, top_indices_comp, _ = lstm_anomaly_detection( X, feature_columns, num_anomalies=num_anomalies, batch_size=batch_size) except Exception as e: print(f"Error details: {str(e)}") print(f"X shape: {X.shape}") print(f"X dtype: {X.dtype}") return f"Error in anomaly detection: {str(e)}", None, None, None, None, None, None progress(0.95, "Generating plots") try: anomaly_plot_all = plot_anomaly_scores(df, anomaly_scores_all, top_indices_all, "All Features") anomaly_plot_comp = plot_anomaly_scores(df, anomaly_scores_comp, top_indices_comp, "Components Only") emotion_plots = [ plot_emotion(df, 'fear', num_anomalies, 'purple'), plot_emotion(df, 'sad', num_anomalies, 'green'), plot_emotion(df, 'angry', num_anomalies, 'orange'), plot_emotion(df, 'happy', num_anomalies, 'darkblue'), plot_emotion(df, 'surprise', num_anomalies, 'gold'), plot_emotion(df, 'neutral', num_anomalies, 'grey') ] except Exception as e: return f"Error generating plots: {str(e)}", None, None, None, None, None, None, None, None, None # Get a random face sample face_sample = get_random_face_sample(organized_faces_folder, largest_cluster, output_folder) progress(1.0, "Preparing results") results = f"Top {num_anomalies} anomalies (All Features):\n" results += "\n".join([f"{score:.4f} at {timecode}" for score, timecode in zip(anomaly_scores_all[top_indices_all], df['Timecode'].iloc[top_indices_all].values)]) results += f"\n\nTop {num_anomalies} anomalies (Components Only):\n" results += "\n".join([f"{score:.4f} at {timecode}" for score, timecode in zip(anomaly_scores_comp[top_indices_comp], df['Timecode'].iloc[top_indices_comp].values)]) for emotion in ['fear', 'sad', 'angry', 'happy', 'surprise', 'neutral']: top_indices = np.argsort(df[emotion].values)[-num_anomalies:][::-1] results += f"\n\nTop {num_anomalies} {emotion.capitalize()} Scores:\n" results += "\n".join([f"{df[emotion].iloc[i]:.4f} at {df['Timecode'].iloc[i]}" for i in top_indices]) return ( results, # Text results to a Textbox face_sample, # Random face sample image anomaly_plot_all, anomaly_plot_comp, *emotion_plots ) # Gradio interface iface = gr.Interface( fn=process_video, inputs=[ gr.Video(), gr.Slider(minimum=1, maximum=20, step=1, value=5, label="Number of Anomalies"), gr.Slider(minimum=1, maximum=20, step=1, value=10, label="Number of Components"), gr.Slider(minimum=1, maximum=30, step=1, value=20, label="Desired FPS"), gr.Slider(minimum=1, maximum=64, step=1, value=16, label="Batch Size") ], outputs=[ gr.Textbox(label="Anomaly Detection Results"), gr.Image(type="filepath", label="Random Face Sample of Most Frequent Person"), gr.Plot(label="Anomaly Scores (All Features)"), gr.Plot(label="Anomaly Scores (Components Only)"), gr.Plot(label="Fear Anomalies"), gr.Plot(label="Sad Anomalies"), gr.Plot(label="Angry Anomalies"), gr.Plot(label="Happy Anomalies"), gr.Plot(label="Surprise Anomalies"), gr.Plot(label="Neutral Anomalies") ], title="Facial Expressions Anomaly Detection", description=""" This application detects anomalies in facial expressions and emotions from a video input. It focuses on the most frequently appearing person in the video for analysis. Adjust the parameters as needed: - Number of Anomalies: How many top anomalies or high intensities to highlight - Number of Components: Complexity of the facial expression model - Desired FPS: Frames per second to analyze (lower for faster processing) - Batch Size: Affects processing speed and memory usage """ ) if __name__ == "__main__": iface.launch()