Update visualization.py
Browse files- visualization.py +66 -25
visualization.py
CHANGED
@@ -217,6 +217,72 @@ def plot_posture(df, posture_scores, color='blue', anomaly_threshold=3):
|
|
217 |
plt.close()
|
218 |
return fig
|
219 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
220 |
def create_heatmap(t, mse_embeddings, mse_posture, mse_voice, video_fps, total_frames, video_width):
|
221 |
frame_count = int(t * video_fps)
|
222 |
|
@@ -246,31 +312,6 @@ def create_heatmap(t, mse_embeddings, mse_posture, mse_voice, video_fps, total_f
|
|
246 |
heatmap_img = heatmap_img.reshape(canvas.get_width_height()[::-1] + (3,))
|
247 |
plt.close(fig)
|
248 |
return heatmap_img
|
249 |
-
|
250 |
-
def create_video_with_heatmap(video_path, df, mse_embeddings, mse_posture, mse_voice, output_folder, desired_fps, largest_cluster):
|
251 |
-
print(f"Creating heatmap video. Output folder: {output_folder}")
|
252 |
-
|
253 |
-
os.makedirs(output_folder, exist_ok=True)
|
254 |
-
|
255 |
-
output_filename = os.path.basename(video_path).rsplit('.', 1)[0] + '_heatmap.mp4'
|
256 |
-
heatmap_video_path = os.path.join(output_folder, output_filename)
|
257 |
-
|
258 |
-
print(f"Heatmap video will be saved at: {heatmap_video_path}")
|
259 |
-
|
260 |
-
# Load the original video
|
261 |
-
video = VideoFileClip(video_path)
|
262 |
-
|
263 |
-
# Get video properties
|
264 |
-
width, height = video.w, video.h
|
265 |
-
total_frames = int(video.duration * video.fps)
|
266 |
-
|
267 |
-
# Ensure all MSE arrays have the same length as total_frames
|
268 |
-
mse_embeddings = np.interp(np.linspace(0, len(mse_embeddings) - 1, total_frames),
|
269 |
-
np.arange(len(mse_embeddings)), mse_embeddings)
|
270 |
-
mse_posture = np.interp(np.linspace(0, len(mse_posture) - 1, total_frames),
|
271 |
-
np.arange(len(mse_posture)), mse_posture)
|
272 |
-
mse_voice = np.interp(np.linspace(0, len(mse_voice) - 1, total_frames),
|
273 |
-
np.arange(len(mse_voice)), mse_voice)
|
274 |
|
275 |
def combine_video_and_heatmap(t):
|
276 |
video_frame = video.get_frame(t)
|
|
|
217 |
plt.close()
|
218 |
return fig
|
219 |
|
220 |
+
|
221 |
+
def filter_mse_for_most_frequent_person(df, mse_embeddings, mse_posture, mse_voice, most_frequent_person_frames):
|
222 |
+
# Create a mask for the most frequent person frames
|
223 |
+
mask = df['Frame'].isin(most_frequent_person_frames)
|
224 |
+
|
225 |
+
# Apply the mask to filter the MSE arrays
|
226 |
+
mse_embeddings_filtered = np.where(mask, mse_embeddings, 0)
|
227 |
+
mse_posture_filtered = np.where(mask, mse_posture, 0)
|
228 |
+
mse_voice_filtered = np.where(mask, mse_voice, 0)
|
229 |
+
|
230 |
+
return mse_embeddings_filtered, mse_posture_filtered, mse_voice_filtered
|
231 |
+
|
232 |
+
def create_video_with_heatmap(video_path, df, mse_embeddings, mse_posture, mse_voice, output_folder, desired_fps, most_frequent_person_frames):
|
233 |
+
print(f"Creating heatmap video. Output folder: {output_folder}")
|
234 |
+
|
235 |
+
os.makedirs(output_folder, exist_ok=True)
|
236 |
+
|
237 |
+
output_filename = os.path.basename(video_path).rsplit('.', 1)[0] + '_heatmap.mp4'
|
238 |
+
heatmap_video_path = os.path.join(output_folder, output_filename)
|
239 |
+
|
240 |
+
print(f"Heatmap video will be saved at: {heatmap_video_path}")
|
241 |
+
|
242 |
+
# Load the original video
|
243 |
+
video = VideoFileClip(video_path)
|
244 |
+
|
245 |
+
# Get video properties
|
246 |
+
width, height = video.w, video.h
|
247 |
+
total_frames = int(video.duration * video.fps)
|
248 |
+
|
249 |
+
# Ensure all MSE arrays have the same length as total_frames
|
250 |
+
mse_embeddings = np.interp(np.linspace(0, len(mse_embeddings) - 1, total_frames),
|
251 |
+
np.arange(len(mse_embeddings)), mse_embeddings)
|
252 |
+
mse_posture = np.interp(np.linspace(0, len(mse_posture) - 1, total_frames),
|
253 |
+
np.arange(len(mse_posture)), mse_posture)
|
254 |
+
mse_voice = np.interp(np.linspace(0, len(mse_voice) - 1, total_frames),
|
255 |
+
np.arange(len(mse_voice)), mse_voice)
|
256 |
+
|
257 |
+
# Filter MSE arrays for the most frequent person frames
|
258 |
+
mse_embeddings_filtered, mse_posture_filtered, mse_voice_filtered = filter_mse_for_most_frequent_person(df, mse_embeddings, mse_posture, mse_voice, most_frequent_person_frames)
|
259 |
+
|
260 |
+
def combine_video_and_heatmap(t):
|
261 |
+
video_frame = video.get_frame(t)
|
262 |
+
heatmap_frame = create_heatmap(t, mse_embeddings_filtered, mse_posture_filtered, mse_voice_filtered, video.fps, total_frames, width)
|
263 |
+
heatmap_frame_resized = cv2.resize(heatmap_frame, (width, heatmap_frame.shape[0]))
|
264 |
+
combined_frame = np.vstack((video_frame, heatmap_frame_resized))
|
265 |
+
return combined_frame
|
266 |
+
|
267 |
+
final_clip = VideoClip(combine_video_and_heatmap, duration=video.duration)
|
268 |
+
final_clip = final_clip.set_audio(video.audio)
|
269 |
+
|
270 |
+
# Write the final video
|
271 |
+
final_clip.write_videofile(heatmap_video_path, codec='libx264', audio_codec='aac', fps=video.fps)
|
272 |
+
|
273 |
+
# Close the video clips
|
274 |
+
video.close()
|
275 |
+
final_clip.close()
|
276 |
+
|
277 |
+
if os.path.exists(heatmap_video_path):
|
278 |
+
print(f"Heatmap video created at: {heatmap_video_path}")
|
279 |
+
print(f"Heatmap video size: {os.path.getsize(heatmap_video_path)} bytes")
|
280 |
+
return heatmap_video_path
|
281 |
+
else:
|
282 |
+
print(f"Failed to create heatmap video at: {heatmap_video_path}")
|
283 |
+
return None
|
284 |
+
|
285 |
+
# Define the create_heatmap function
|
286 |
def create_heatmap(t, mse_embeddings, mse_posture, mse_voice, video_fps, total_frames, video_width):
|
287 |
frame_count = int(t * video_fps)
|
288 |
|
|
|
312 |
heatmap_img = heatmap_img.reshape(canvas.get_width_height()[::-1] + (3,))
|
313 |
plt.close(fig)
|
314 |
return heatmap_img
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
315 |
|
316 |
def combine_video_and_heatmap(t):
|
317 |
video_frame = video.get_frame(t)
|