Update visualization.py
Browse files- visualization.py +48 -14
visualization.py
CHANGED
@@ -249,32 +249,66 @@ def create_heatmap(t, mse_embeddings, mse_posture, mse_voice, video_fps, total_f
|
|
249 |
|
250 |
def create_video_with_heatmap(video_path, df, mse_embeddings, mse_posture, mse_voice, output_folder, desired_fps, largest_cluster):
|
251 |
print(f"Creating heatmap video. Output folder: {output_folder}")
|
252 |
-
|
253 |
os.makedirs(output_folder, exist_ok=True)
|
254 |
-
|
255 |
output_filename = os.path.basename(video_path).rsplit('.', 1)[0] + '_heatmap.mp4'
|
256 |
heatmap_video_path = os.path.join(output_folder, output_filename)
|
257 |
-
|
258 |
print(f"Heatmap video will be saved at: {heatmap_video_path}")
|
259 |
|
260 |
# Load the original video
|
261 |
video = VideoFileClip(video_path)
|
262 |
-
|
263 |
# Get video properties
|
264 |
width, height = video.w, video.h
|
265 |
total_frames = int(video.duration * video.fps)
|
266 |
-
|
267 |
-
def
|
268 |
result = np.zeros(total_frames)
|
269 |
indices = np.linspace(0, total_frames - 1, len(mse_array)).astype(int)
|
270 |
result[indices] = mse_array
|
|
|
|
|
|
|
271 |
return result
|
272 |
|
273 |
-
#
|
274 |
-
mse_embeddings =
|
275 |
-
mse_posture =
|
276 |
-
mse_voice =
|
277 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
278 |
def combine_video_and_heatmap(t):
|
279 |
video_frame = video.get_frame(t)
|
280 |
heatmap_frame = create_heatmap(t, mse_embeddings, mse_posture, mse_voice, video.fps, total_frames, width)
|
@@ -287,18 +321,18 @@ def create_video_with_heatmap(video_path, df, mse_embeddings, mse_posture, mse_v
|
|
287 |
|
288 |
# Write the final video
|
289 |
final_clip.write_videofile(heatmap_video_path, codec='libx264', audio_codec='aac', fps=video.fps)
|
290 |
-
|
291 |
# Close the video clips
|
292 |
video.close()
|
293 |
final_clip.close()
|
294 |
-
|
295 |
if os.path.exists(heatmap_video_path):
|
296 |
print(f"Heatmap video created at: {heatmap_video_path}")
|
297 |
print(f"Heatmap video size: {os.path.getsize(heatmap_video_path)} bytes")
|
298 |
return heatmap_video_path
|
299 |
else:
|
300 |
print(f"Failed to create heatmap video at: {heatmap_video_path}")
|
301 |
-
return None
|
302 |
|
303 |
|
304 |
# Function to create the correlation heatmap
|
|
|
249 |
|
250 |
def create_video_with_heatmap(video_path, df, mse_embeddings, mse_posture, mse_voice, output_folder, desired_fps, largest_cluster):
|
251 |
print(f"Creating heatmap video. Output folder: {output_folder}")
|
|
|
252 |
os.makedirs(output_folder, exist_ok=True)
|
|
|
253 |
output_filename = os.path.basename(video_path).rsplit('.', 1)[0] + '_heatmap.mp4'
|
254 |
heatmap_video_path = os.path.join(output_folder, output_filename)
|
|
|
255 |
print(f"Heatmap video will be saved at: {heatmap_video_path}")
|
256 |
|
257 |
# Load the original video
|
258 |
video = VideoFileClip(video_path)
|
259 |
+
|
260 |
# Get video properties
|
261 |
width, height = video.w, video.h
|
262 |
total_frames = int(video.duration * video.fps)
|
263 |
+
|
264 |
+
def fill_with_previous_values(mse_array, total_frames):
|
265 |
result = np.zeros(total_frames)
|
266 |
indices = np.linspace(0, total_frames - 1, len(mse_array)).astype(int)
|
267 |
result[indices] = mse_array
|
268 |
+
for i in range(1, total_frames):
|
269 |
+
if result[i] == 0:
|
270 |
+
result[i] = result[i-1]
|
271 |
return result
|
272 |
|
273 |
+
# Fill gaps with previous values
|
274 |
+
mse_embeddings = fill_with_previous_values(mse_embeddings, total_frames)
|
275 |
+
mse_posture = fill_with_previous_values(mse_posture, total_frames)
|
276 |
+
mse_voice = fill_with_previous_values(mse_voice, total_frames)
|
277 |
+
|
278 |
+
# Find max values for each variable
|
279 |
+
max_embeddings = np.max(mse_embeddings)
|
280 |
+
max_posture = np.max(mse_posture)
|
281 |
+
max_voice = np.max(mse_voice)
|
282 |
+
|
283 |
+
def create_heatmap(t, mse_embeddings, mse_posture, mse_voice, fps, total_frames, width):
|
284 |
+
frame_index = int(t * fps)
|
285 |
+
|
286 |
+
# Create separate color maps for each variable
|
287 |
+
cmap_embeddings = plt.get_cmap('Reds')
|
288 |
+
cmap_posture = plt.get_cmap('Reds')
|
289 |
+
cmap_voice = plt.get_cmap('Reds')
|
290 |
+
|
291 |
+
# Normalize values within their own scales
|
292 |
+
norm_embeddings = mse_embeddings[frame_index] / max_embeddings
|
293 |
+
norm_posture = mse_posture[frame_index] / max_posture
|
294 |
+
norm_voice = mse_voice[frame_index] / max_voice
|
295 |
+
|
296 |
+
# Create color arrays for each variable
|
297 |
+
color_embeddings = cmap_embeddings(norm_embeddings)
|
298 |
+
color_posture = cmap_posture(norm_posture)
|
299 |
+
color_voice = cmap_voice(norm_voice)
|
300 |
+
|
301 |
+
# Create the heatmap frame
|
302 |
+
heatmap_height = 100 # Adjust as needed
|
303 |
+
heatmap_frame = np.zeros((heatmap_height, width, 4))
|
304 |
+
|
305 |
+
# Fill the heatmap sections
|
306 |
+
heatmap_frame[:heatmap_height//3, :] = color_embeddings
|
307 |
+
heatmap_frame[heatmap_height//3:2*heatmap_height//3, :] = color_posture
|
308 |
+
heatmap_frame[2*heatmap_height//3:, :] = color_voice
|
309 |
+
|
310 |
+
return (heatmap_frame * 255).astype(np.uint8)
|
311 |
+
|
312 |
def combine_video_and_heatmap(t):
|
313 |
video_frame = video.get_frame(t)
|
314 |
heatmap_frame = create_heatmap(t, mse_embeddings, mse_posture, mse_voice, video.fps, total_frames, width)
|
|
|
321 |
|
322 |
# Write the final video
|
323 |
final_clip.write_videofile(heatmap_video_path, codec='libx264', audio_codec='aac', fps=video.fps)
|
324 |
+
|
325 |
# Close the video clips
|
326 |
video.close()
|
327 |
final_clip.close()
|
328 |
+
|
329 |
if os.path.exists(heatmap_video_path):
|
330 |
print(f"Heatmap video created at: {heatmap_video_path}")
|
331 |
print(f"Heatmap video size: {os.path.getsize(heatmap_video_path)} bytes")
|
332 |
return heatmap_video_path
|
333 |
else:
|
334 |
print(f"Failed to create heatmap video at: {heatmap_video_path}")
|
335 |
+
return None
|
336 |
|
337 |
|
338 |
# Function to create the correlation heatmap
|