Update visualization.py
Browse files- visualization.py +44 -9
visualization.py
CHANGED
@@ -6,6 +6,7 @@ import seaborn as sns
|
|
6 |
import numpy as np
|
7 |
import pandas as pd
|
8 |
import cv2
|
|
|
9 |
from matplotlib.patches import Rectangle
|
10 |
from utils import seconds_to_timecode
|
11 |
from anomaly_detection import determine_anomalies
|
@@ -216,11 +217,10 @@ def plot_posture(df, posture_scores, color='blue', anomaly_threshold=3):
|
|
216 |
def create_video_with_heatmap(video_path, df, mse_embeddings, mse_posture, mse_voice, output_folder, desired_fps, largest_cluster, progress=None):
|
217 |
print(f"Creating heatmap video. Output folder: {output_folder}")
|
218 |
|
219 |
-
# Create output folder if it doesn't exist
|
220 |
os.makedirs(output_folder, exist_ok=True)
|
221 |
|
222 |
-
# Define output path
|
223 |
output_filename = os.path.basename(video_path).rsplit('.', 1)[0] + '_heatmap.mp4'
|
|
|
224 |
heatmap_video_path = os.path.join(output_folder, output_filename)
|
225 |
|
226 |
print(f"Heatmap video will be saved at: {heatmap_video_path}")
|
@@ -231,8 +231,8 @@ def create_video_with_heatmap(video_path, df, mse_embeddings, mse_posture, mse_v
|
|
231 |
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
232 |
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
233 |
|
234 |
-
fourcc = cv2.VideoWriter_fourcc(*'
|
235 |
-
out = cv2.VideoWriter(
|
236 |
print(f"VideoWriter initialized. FPS: {original_fps}, Size: {(width, height + 200)}")
|
237 |
|
238 |
# Ensure all MSE arrays have the same length as total_frames
|
@@ -252,7 +252,6 @@ def create_video_with_heatmap(video_path, df, mse_embeddings, mse_posture, mse_v
|
|
252 |
combined_mse[1] = mse_posture_norm
|
253 |
combined_mse[2] = mse_voice_norm
|
254 |
|
255 |
-
# Custom colormap definition
|
256 |
cdict = {
|
257 |
'red': [(0.0, 0.0, 0.0),
|
258 |
(1.0, 1.0, 1.0)],
|
@@ -274,7 +273,6 @@ def create_video_with_heatmap(video_path, df, mse_embeddings, mse_posture, mse_v
|
|
274 |
line = None
|
275 |
try:
|
276 |
for frame_count in range(total_frames):
|
277 |
-
cap.set(cv2.CAP_PROP_POS_FRAMES, frame_count)
|
278 |
ret, frame = cap.read()
|
279 |
if not ret:
|
280 |
print(f"Failed to read frame {frame_count}")
|
@@ -290,13 +288,23 @@ def create_video_with_heatmap(video_path, df, mse_embeddings, mse_posture, mse_v
|
|
290 |
heatmap_img = heatmap_img.reshape(canvas.get_width_height()[::-1] + (3,))
|
291 |
heatmap_img = cv2.resize(heatmap_img, (width, 200))
|
292 |
|
293 |
-
|
|
|
|
|
|
|
|
|
294 |
|
295 |
seconds = frame_count / original_fps
|
296 |
timecode = f"{int(seconds//3600):02d}:{int((seconds%3600)//60):02d}:{int(seconds%60):02d}"
|
297 |
-
cv2.putText(combined_frame, f"Time: {timecode}", (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2)
|
298 |
|
299 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
300 |
|
301 |
if progress is not None:
|
302 |
try:
|
@@ -312,6 +320,33 @@ def create_video_with_heatmap(video_path, df, mse_embeddings, mse_posture, mse_v
|
|
312 |
cap.release()
|
313 |
out.release()
|
314 |
plt.close(fig)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
315 |
|
316 |
if os.path.exists(heatmap_video_path):
|
317 |
print(f"Heatmap video created at: {heatmap_video_path}")
|
|
|
6 |
import numpy as np
|
7 |
import pandas as pd
|
8 |
import cv2
|
9 |
+
from moviepy.editor import VideoFileClip, AudioFileClip, CompositeVideoClip
|
10 |
from matplotlib.patches import Rectangle
|
11 |
from utils import seconds_to_timecode
|
12 |
from anomaly_detection import determine_anomalies
|
|
|
217 |
def create_video_with_heatmap(video_path, df, mse_embeddings, mse_posture, mse_voice, output_folder, desired_fps, largest_cluster, progress=None):
|
218 |
print(f"Creating heatmap video. Output folder: {output_folder}")
|
219 |
|
|
|
220 |
os.makedirs(output_folder, exist_ok=True)
|
221 |
|
|
|
222 |
output_filename = os.path.basename(video_path).rsplit('.', 1)[0] + '_heatmap.mp4'
|
223 |
+
temp_video_path = os.path.join(output_folder, 'temp_' + output_filename)
|
224 |
heatmap_video_path = os.path.join(output_folder, output_filename)
|
225 |
|
226 |
print(f"Heatmap video will be saved at: {heatmap_video_path}")
|
|
|
231 |
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
232 |
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
233 |
|
234 |
+
fourcc = cv2.VideoWriter_fourcc(*'avc1')
|
235 |
+
out = cv2.VideoWriter(temp_video_path, fourcc, original_fps, (width, height + 200))
|
236 |
print(f"VideoWriter initialized. FPS: {original_fps}, Size: {(width, height + 200)}")
|
237 |
|
238 |
# Ensure all MSE arrays have the same length as total_frames
|
|
|
252 |
combined_mse[1] = mse_posture_norm
|
253 |
combined_mse[2] = mse_voice_norm
|
254 |
|
|
|
255 |
cdict = {
|
256 |
'red': [(0.0, 0.0, 0.0),
|
257 |
(1.0, 1.0, 1.0)],
|
|
|
273 |
line = None
|
274 |
try:
|
275 |
for frame_count in range(total_frames):
|
|
|
276 |
ret, frame = cap.read()
|
277 |
if not ret:
|
278 |
print(f"Failed to read frame {frame_count}")
|
|
|
288 |
heatmap_img = heatmap_img.reshape(canvas.get_width_height()[::-1] + (3,))
|
289 |
heatmap_img = cv2.resize(heatmap_img, (width, 200))
|
290 |
|
291 |
+
# Convert frame from BGR to RGB
|
292 |
+
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
293 |
+
|
294 |
+
# Combine RGB frame with RGB heatmap
|
295 |
+
combined_frame = np.vstack((frame_rgb, heatmap_img))
|
296 |
|
297 |
seconds = frame_count / original_fps
|
298 |
timecode = f"{int(seconds//3600):02d}:{int((seconds%3600)//60):02d}:{int(seconds%60):02d}"
|
|
|
299 |
|
300 |
+
# Add timecode to the combined frame (which is now in RGB)
|
301 |
+
combined_frame = cv2.putText(combined_frame, f"Time: {timecode}", (10, 30),
|
302 |
+
cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2)
|
303 |
+
|
304 |
+
# Convert back to BGR for OpenCV VideoWriter
|
305 |
+
combined_frame_bgr = cv2.cvtColor(combined_frame, cv2.COLOR_RGB2BGR)
|
306 |
+
|
307 |
+
out.write(combined_frame_bgr)
|
308 |
|
309 |
if progress is not None:
|
310 |
try:
|
|
|
320 |
cap.release()
|
321 |
out.release()
|
322 |
plt.close(fig)
|
323 |
+
|
324 |
+
# Add audio to the video
|
325 |
+
try:
|
326 |
+
original_video = VideoFileClip(video_path)
|
327 |
+
heatmap_video = VideoFileClip(temp_video_path)
|
328 |
+
|
329 |
+
# Resize the heatmap video to match the original video's duration
|
330 |
+
heatmap_video = heatmap_video.set_duration(original_video.duration)
|
331 |
+
|
332 |
+
# Add the audio from the original video
|
333 |
+
final_video = heatmap_video.set_audio(original_video.audio)
|
334 |
+
|
335 |
+
# Write the final video
|
336 |
+
final_video.write_videofile(heatmap_video_path, codec='libx264', audio_codec='aac')
|
337 |
+
|
338 |
+
# Close the video clips
|
339 |
+
original_video.close()
|
340 |
+
heatmap_video.close()
|
341 |
+
final_video.close()
|
342 |
+
|
343 |
+
# Remove the temporary video file
|
344 |
+
os.remove(temp_video_path)
|
345 |
+
|
346 |
+
except Exception as e:
|
347 |
+
print(f"Error in adding audio to video: {str(e)}")
|
348 |
+
import traceback
|
349 |
+
traceback.print_exc()
|
350 |
|
351 |
if os.path.exists(heatmap_video_path):
|
352 |
print(f"Heatmap video created at: {heatmap_video_path}")
|