reab5555 commited on
Commit
cd06a09
·
verified ·
1 Parent(s): 923042b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +11 -9
app.py CHANGED
@@ -140,7 +140,7 @@ with gr.Blocks() as iface:
140
  MediaPipe Pose is a versatile machine learning library designed for high-accuracy real-time posture estimation. Mediapipe Pose uses a deep learning model to detect body landmarks and infer body posture.
141
 
142
  - **Real-Time Performance**: Capable of processing video frames at real-time speeds, making it suitable for live video analysis.
143
- - **Accuracy and Precision**: Detects 33 body landmarks, including important joints and key points, enabling detailed posture and movement analysis.
144
  - **Integration**: Easily integrates with other machine learning frameworks and tools, enhancing its versatility for various applications.
145
 
146
  ## Voice Analysis
@@ -225,16 +225,18 @@ with gr.Blocks() as iface:
225
  outputs=results_group
226
  )
227
 
228
- example_video_1.click(
229
- lambda: "appendix/Bill Clinton and Jim Lehrer.mp4",
230
- None,
231
- video_input,
 
232
  )
233
 
234
- example_video_2.click(
235
- lambda: "appendix/Wade_Wilson_Penalty_Phase_Trial.mp4",
236
- None,
237
- video_input,
 
238
  )
239
 
240
  if __name__ == "__main__":
 
140
  MediaPipe Pose is a versatile machine learning library designed for high-accuracy real-time posture estimation. Mediapipe Pose uses a deep learning model to detect body landmarks and infer body posture.
141
 
142
  - **Real-Time Performance**: Capable of processing video frames at real-time speeds, making it suitable for live video analysis.
143
+ - **Accuracy and Precision**: Detects body landmarks, including important joints and key points, enabling detailed posture and movement analysis.
144
  - **Integration**: Easily integrates with other machine learning frameworks and tools, enhancing its versatility for various applications.
145
 
146
  ## Voice Analysis
 
225
  outputs=results_group
226
  )
227
 
228
+ example_btn_1.click(
229
+ set_video_path,
230
+ inputs=[],
231
+ outputs=[video_input],
232
+ _js="() => 'appendix/Bill Clinton and Jim Lehrer.mp4'"
233
  )
234
 
235
+ example_btn_2.click(
236
+ set_video_path,
237
+ inputs=[],
238
+ outputs=[video_input],
239
+ _js="() => 'appendix/Wade_Wilson_Penalty_Phase_Trial.mp4'"
240
  )
241
 
242
  if __name__ == "__main__":