reab5555 commited on
Commit
c6afbe9
·
verified ·
1 Parent(s): 38c3415

Update anomaly_detection.py

Browse files
Files changed (1) hide show
  1. anomaly_detection.py +16 -5
anomaly_detection.py CHANGED
@@ -58,7 +58,7 @@ def vae_loss(recon_x, x, mu, logvar):
58
  KLD = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp())
59
  return BCE + KLD
60
 
61
- def anomaly_detection(X_embeddings, X_posture, epochs=200, patience=5):
62
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
63
 
64
  # Normalize posture
@@ -75,16 +75,24 @@ def anomaly_detection(X_embeddings, X_posture, epochs=200, patience=5):
75
  if X_posture_scaled.dim() == 2:
76
  X_posture_scaled = X_posture_scaled.unsqueeze(0)
77
 
 
 
 
 
 
78
  model_embeddings = VAE(input_size=X_embeddings.shape[2]).to(device)
79
  model_posture = VAE(input_size=X_posture_scaled.shape[2]).to(device)
 
80
 
81
  optimizer_embeddings = optim.Adam(model_embeddings.parameters())
82
  optimizer_posture = optim.Adam(model_posture.parameters())
 
83
 
84
  # Train models
85
- for epoch in range(epochs):
86
  for model, optimizer, X in [(model_embeddings, optimizer_embeddings, X_embeddings),
87
- (model_posture, optimizer_posture, X_posture_scaled)]:
 
88
  model.train()
89
  optimizer.zero_grad()
90
  recon_batch, mu, logvar = model(X)
@@ -92,16 +100,19 @@ def anomaly_detection(X_embeddings, X_posture, epochs=200, patience=5):
92
  loss.backward()
93
  optimizer.step()
94
 
95
- # Compute reconstruction error for embeddings and posture
96
  model_embeddings.eval()
97
  model_posture.eval()
 
98
  with torch.no_grad():
99
  recon_embeddings, _, _ = model_embeddings(X_embeddings)
100
  recon_posture, _, _ = model_posture(X_posture_scaled)
 
101
  mse_embeddings = F.mse_loss(recon_embeddings, X_embeddings, reduction='none').mean(dim=2).cpu().numpy().squeeze()
102
  mse_posture = F.mse_loss(recon_posture, X_posture_scaled, reduction='none').mean(dim=2).cpu().numpy().squeeze()
 
103
 
104
- return mse_embeddings, mse_posture
105
 
106
  def determine_anomalies(mse_values, threshold):
107
  mean = np.mean(mse_values)
 
58
  KLD = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp())
59
  return BCE + KLD
60
 
61
+ def anomaly_detection(X_embeddings, X_posture, X_voice, epochs=200, patience=5):
62
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
63
 
64
  # Normalize posture
 
75
  if X_posture_scaled.dim() == 2:
76
  X_posture_scaled = X_posture_scaled.unsqueeze(0)
77
 
78
+ # Process voice embeddings
79
+ X_voice = torch.FloatTensor(X_voice).to(device)
80
+ if X_voice.dim() == 2:
81
+ X_voice = X_voice.unsqueeze(0)
82
+
83
  model_embeddings = VAE(input_size=X_embeddings.shape[2]).to(device)
84
  model_posture = VAE(input_size=X_posture_scaled.shape[2]).to(device)
85
+ model_voice = VAE(input_size=X_voice.shape[2]).to(device)
86
 
87
  optimizer_embeddings = optim.Adam(model_embeddings.parameters())
88
  optimizer_posture = optim.Adam(model_posture.parameters())
89
+ optimizer_voice = optim.Adam(model_voice.parameters())
90
 
91
  # Train models
92
+ for epoch in range(int(epochs)): # Ensure epochs is an integer
93
  for model, optimizer, X in [(model_embeddings, optimizer_embeddings, X_embeddings),
94
+ (model_posture, optimizer_posture, X_posture_scaled),
95
+ (model_voice, optimizer_voice, X_voice)]:
96
  model.train()
97
  optimizer.zero_grad()
98
  recon_batch, mu, logvar = model(X)
 
100
  loss.backward()
101
  optimizer.step()
102
 
103
+ # Compute reconstruction error for embeddings, posture, and voice
104
  model_embeddings.eval()
105
  model_posture.eval()
106
+ model_voice.eval()
107
  with torch.no_grad():
108
  recon_embeddings, _, _ = model_embeddings(X_embeddings)
109
  recon_posture, _, _ = model_posture(X_posture_scaled)
110
+ recon_voice, _, _ = model_voice(X_voice)
111
  mse_embeddings = F.mse_loss(recon_embeddings, X_embeddings, reduction='none').mean(dim=2).cpu().numpy().squeeze()
112
  mse_posture = F.mse_loss(recon_posture, X_posture_scaled, reduction='none').mean(dim=2).cpu().numpy().squeeze()
113
+ mse_voice = F.mse_loss(recon_voice, X_voice, reduction='none').mean(dim=2).cpu().numpy().squeeze()
114
 
115
+ return mse_embeddings, mse_posture, mse_voice
116
 
117
  def determine_anomalies(mse_values, threshold):
118
  mean = np.mean(mse_values)