Update voice_analysis.py
Browse files- voice_analysis.py +28 -2
voice_analysis.py
CHANGED
@@ -22,9 +22,20 @@ def diarize_speakers(audio_path):
|
|
22 |
|
23 |
pipeline = Pipeline.from_pretrained("pyannote/speaker-diarization-3.1", use_auth_token=hf_token)
|
24 |
diarization = pipeline(audio_path)
|
25 |
-
return diarization
|
26 |
|
27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
model = Model.from_pretrained(model_name, use_auth_token=os.environ.get("py_annote_hf_token"))
|
29 |
waveform, sample_rate = torchaudio.load(audio_path)
|
30 |
duration = waveform.shape[1] / sample_rate
|
@@ -39,6 +50,9 @@ def get_speaker_embeddings(audio_path, diarization, model_name="pyannote/embeddi
|
|
39 |
|
40 |
embeddings = []
|
41 |
for turn, _, speaker in diarization.itertracks(yield_label=True):
|
|
|
|
|
|
|
42 |
start_frame = int(turn.start * sample_rate)
|
43 |
end_frame = int(turn.end * sample_rate)
|
44 |
segment = waveform[:, start_frame:end_frame]
|
@@ -79,6 +93,18 @@ def get_speaker_embeddings(audio_path, diarization, model_name="pyannote/embeddi
|
|
79 |
|
80 |
return embeddings, duration
|
81 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
def align_voice_embeddings(voice_embeddings, frame_count, fps, audio_duration):
|
83 |
aligned_embeddings = []
|
84 |
current_embedding_index = 0
|
|
|
22 |
|
23 |
pipeline = Pipeline.from_pretrained("pyannote/speaker-diarization-3.1", use_auth_token=hf_token)
|
24 |
diarization = pipeline(audio_path)
|
|
|
25 |
|
26 |
+
# Identify the most frequent speaker
|
27 |
+
speaker_segments = {}
|
28 |
+
for turn, _, speaker in diarization.itertracks(yield_label=True):
|
29 |
+
if speaker not in speaker_segments:
|
30 |
+
speaker_segments[speaker] = 0
|
31 |
+
speaker_segments[speaker] += turn.end - turn.start
|
32 |
+
|
33 |
+
most_frequent_speaker = max(speaker_segments, key=speaker_segments.get)
|
34 |
+
|
35 |
+
return diarization, most_frequent_speaker
|
36 |
+
|
37 |
+
|
38 |
+
def get_speaker_embeddings(audio_path, diarization, most_frequent_speaker, model_name="pyannote/embedding"):
|
39 |
model = Model.from_pretrained(model_name, use_auth_token=os.environ.get("py_annote_hf_token"))
|
40 |
waveform, sample_rate = torchaudio.load(audio_path)
|
41 |
duration = waveform.shape[1] / sample_rate
|
|
|
50 |
|
51 |
embeddings = []
|
52 |
for turn, _, speaker in diarization.itertracks(yield_label=True):
|
53 |
+
if speaker != most_frequent_speaker:
|
54 |
+
continue
|
55 |
+
|
56 |
start_frame = int(turn.start * sample_rate)
|
57 |
end_frame = int(turn.end * sample_rate)
|
58 |
segment = waveform[:, start_frame:end_frame]
|
|
|
93 |
|
94 |
return embeddings, duration
|
95 |
|
96 |
+
|
97 |
+
# Ensure embeddings cover the entire duration
|
98 |
+
if embeddings and embeddings[-1]['time'] + embeddings[-1]['duration'] < duration:
|
99 |
+
embeddings.append({
|
100 |
+
"time": duration,
|
101 |
+
"duration": 0,
|
102 |
+
"embedding": np.zeros_like(embeddings[0]['embedding']),
|
103 |
+
"speaker": "silence"
|
104 |
+
})
|
105 |
+
|
106 |
+
return embeddings, duration
|
107 |
+
|
108 |
def align_voice_embeddings(voice_embeddings, frame_count, fps, audio_duration):
|
109 |
aligned_embeddings = []
|
110 |
current_embedding_index = 0
|