reab5555 commited on
Commit
a1ef92e
·
verified ·
1 Parent(s): 723156d

Delete transcribe.py

Browse files
Files changed (1) hide show
  1. transcribe.py +0 -91
transcribe.py DELETED
@@ -1,91 +0,0 @@
1
- import os
2
-
3
- import numpy as np
4
- import torch
5
- from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, WhisperFeatureExtractor
6
- from moviepy.editor import VideoFileClip, AudioFileClip
7
- import nltk
8
- nltk.download('punkt', quiet=True)
9
- from nltk.tokenize import sent_tokenize
10
- import librosa
11
-
12
- def transcribe(video_file, transcribe_to_text=True, transcribe_to_srt=True, target_language='en'):
13
- device = "cuda:0" if torch.cuda.is_available() else "cpu"
14
- torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
15
-
16
- model_id = "openai/whisper-large-v3"
17
- model = AutoModelForSpeechSeq2Seq.from_pretrained(
18
- model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
19
- )
20
- model.to(device)
21
-
22
- processor = AutoProcessor.from_pretrained(model_id)
23
- feature_extractor = WhisperFeatureExtractor.from_pretrained(model_id)
24
-
25
- video = VideoFileClip(video_file)
26
- audio = video.audio
27
- duration = audio.duration
28
- chunk_duration = 60
29
- n_chunks = int(np.ceil(duration / chunk_duration))
30
-
31
- full_transcription = ""
32
- for i in range(n_chunks):
33
- start_time = i * chunk_duration
34
- end_time = min((i + 1) * chunk_duration, duration)
35
-
36
- audio_chunk = audio.subclip(start_time, end_time)
37
- temp_file_path = f"temp_audio_chunk_{i}.wav"
38
- audio_chunk.write_audiofile(temp_file_path, codec='pcm_s16le')
39
-
40
-
41
- try:
42
- sound_array, _ = librosa.load(temp_file_path, sr=16000)
43
- except Exception as e:
44
- print(f"Error reading audio file: {e}")
45
- continue # Skip this chunk if there's an error
46
-
47
-
48
- if sound_array.ndim > 1:
49
- sound_array = np.mean(sound_array, axis=1)
50
-
51
- input_features = feature_extractor(sound_array, sampling_rate=16000, return_tensors="pt").input_features
52
- input_features = input_features.to(device=device, dtype=torch_dtype)
53
-
54
- with torch.no_grad():
55
- if target_language:
56
- model.config.forced_decoder_ids = processor.get_decoder_prompt_ids(language=target_language,
57
- task="transcribe")
58
- generated_ids = model.generate(input_features, max_length=448)
59
- transcription = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
60
-
61
- full_transcription += transcription + " "
62
- os.remove(temp_file_path)
63
- print(f"Processed chunk {i + 1}/{n_chunks}")
64
-
65
- # Split the transcription into sentences
66
- sentences = sent_tokenize(full_transcription.strip())
67
-
68
- # Estimate time for each sentence based on its length relative to the total transcription
69
- total_chars = sum(len(s) for s in sentences)
70
- sentence_times = []
71
- current_time = 0
72
- for sentence in sentences:
73
- sentence_duration = (len(sentence) / total_chars) * duration
74
- sentence_times.append((current_time, current_time + sentence_duration))
75
- current_time += sentence_duration
76
-
77
- output = ""
78
- if transcribe_to_text:
79
- output += "Text Transcription:\n" + full_transcription + "\n\n"
80
-
81
- if transcribe_to_srt:
82
- output += "SRT Transcription:\n"
83
- for i, (sentence, (start, end)) in enumerate(zip(sentences, sentence_times), 1):
84
- output += f"{i}\n{format_time(start)} --> {format_time(end)}\n{sentence}\n\n"
85
-
86
- return output
87
-
88
- def format_time(seconds):
89
- m, s = divmod(seconds, 60)
90
- h, m = divmod(m, 60)
91
- return f"{int(h):02d}:{int(m):02d}:{s:06.3f}".replace('.', ',')