Update visualization.py
Browse files- visualization.py +18 -16
visualization.py
CHANGED
@@ -210,7 +210,7 @@ import matplotlib.colors as mcolors
|
|
210 |
import numpy as np
|
211 |
import cv2
|
212 |
|
213 |
-
def create_video_with_heatmap(video_path, df, mse_embeddings, mse_posture, output_path, desired_fps):
|
214 |
cap = cv2.VideoCapture(video_path)
|
215 |
original_fps = cap.get(cv2.CAP_PROP_FPS)
|
216 |
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
@@ -222,35 +222,37 @@ def create_video_with_heatmap(video_path, df, mse_embeddings, mse_posture, outpu
|
|
222 |
|
223 |
# Create custom colormap
|
224 |
cmap = mcolors.LinearSegmentedColormap.from_list("custom",
|
225 |
-
[(
|
|
|
|
|
|
|
226 |
|
227 |
# Ensure heatmap data covers all frames
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
|
|
|
|
232 |
|
233 |
# Normalize MSE values
|
234 |
-
mse_embeddings_norm = (
|
235 |
-
mse_posture_norm = (
|
236 |
|
237 |
# Combine MSEs
|
238 |
-
combined_mse = np.zeros((2, total_frames))
|
239 |
-
combined_mse[0] = mse_embeddings_norm
|
240 |
-
combined_mse[1] = mse_posture_norm
|
241 |
|
242 |
fig, ax = plt.subplots(figsize=(width/100, 2))
|
243 |
-
im = ax.imshow(combined_mse, aspect='auto',
|
244 |
ax.set_yticks([0.5, 1.5])
|
245 |
ax.set_yticklabels(['Facial', 'Posture'])
|
246 |
ax.set_xticks([])
|
247 |
-
cbar = plt.colorbar(im, ax=ax, orientation='horizontal', pad=0.1, aspect=20, shrink=0.5)
|
248 |
-
cbar.set_ticks([0, 0.5, 1])
|
249 |
-
cbar.set_ticklabels(['Low MSE', 'Medium MSE', 'High MSE'])
|
250 |
plt.tight_layout()
|
251 |
|
252 |
line = None
|
253 |
-
frame_interval =
|
254 |
|
255 |
for frame_count in range(0, total_frames, frame_interval):
|
256 |
cap.set(cv2.CAP_PROP_POS_FRAMES, frame_count)
|
|
|
210 |
import numpy as np
|
211 |
import cv2
|
212 |
|
213 |
+
def create_video_with_heatmap(video_path, df, mse_embeddings, mse_posture, output_path, desired_fps, largest_cluster):
|
214 |
cap = cv2.VideoCapture(video_path)
|
215 |
original_fps = cap.get(cv2.CAP_PROP_FPS)
|
216 |
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
|
|
222 |
|
223 |
# Create custom colormap
|
224 |
cmap = mcolors.LinearSegmentedColormap.from_list("custom",
|
225 |
+
[(1, 1, 1), (0, 0, 1), (0.5, 0, 0.5)], N=256)
|
226 |
+
|
227 |
+
# Filter data for the most frequent person
|
228 |
+
df_most_frequent = df[df['Cluster'] == largest_cluster]
|
229 |
|
230 |
# Ensure heatmap data covers all frames
|
231 |
+
full_range = np.arange(total_frames)
|
232 |
+
mse_embeddings_full = np.zeros(total_frames)
|
233 |
+
mse_posture_full = np.zeros(total_frames)
|
234 |
+
|
235 |
+
mse_embeddings_full[df_most_frequent['Frame']] = mse_embeddings
|
236 |
+
mse_posture_full[df_most_frequent['Frame']] = mse_posture
|
237 |
|
238 |
# Normalize MSE values
|
239 |
+
mse_embeddings_norm = (mse_embeddings_full - np.min(mse_embeddings_full)) / (np.max(mse_embeddings_full) - np.min(mse_embeddings_full))
|
240 |
+
mse_posture_norm = (mse_posture_full - np.min(mse_posture_full)) / (np.max(mse_posture_full) - np.min(mse_posture_full))
|
241 |
|
242 |
# Combine MSEs
|
243 |
+
combined_mse = np.zeros((2, total_frames, 3))
|
244 |
+
combined_mse[0] = np.array([1 - mse_embeddings_norm, 1 - mse_embeddings_norm, mse_embeddings_norm]).T # RGB for facial
|
245 |
+
combined_mse[1] = np.array([1 - mse_posture_norm, mse_posture_norm, 1 - mse_posture_norm]).T # RGB for posture
|
246 |
|
247 |
fig, ax = plt.subplots(figsize=(width/100, 2))
|
248 |
+
im = ax.imshow(combined_mse, aspect='auto', extent=[0, total_frames, 0, 2])
|
249 |
ax.set_yticks([0.5, 1.5])
|
250 |
ax.set_yticklabels(['Facial', 'Posture'])
|
251 |
ax.set_xticks([])
|
|
|
|
|
|
|
252 |
plt.tight_layout()
|
253 |
|
254 |
line = None
|
255 |
+
frame_interval = int(original_fps / desired_fps)
|
256 |
|
257 |
for frame_count in range(0, total_frames, frame_interval):
|
258 |
cap.set(cv2.CAP_PROP_POS_FRAMES, frame_count)
|