Spaces:
Runtime error
Runtime error
Update voice_analysis.py
Browse files- voice_analysis.py +5 -0
voice_analysis.py
CHANGED
|
@@ -33,6 +33,7 @@ def get_speaker_embeddings(audio_path, diarization, model_name="pyannote/embeddi
|
|
| 33 |
model.eval() # Set the model to evaluation mode
|
| 34 |
|
| 35 |
waveform, sample_rate = torchaudio.load(audio_path)
|
|
|
|
| 36 |
embeddings = []
|
| 37 |
|
| 38 |
for turn, _, speaker in diarization.itertracks(yield_label=True):
|
|
@@ -40,6 +41,8 @@ def get_speaker_embeddings(audio_path, diarization, model_name="pyannote/embeddi
|
|
| 40 |
end_frame = int(turn.end * sample_rate)
|
| 41 |
|
| 42 |
segment = waveform[:, start_frame:end_frame]
|
|
|
|
|
|
|
| 43 |
if segment.shape[1] == 0:
|
| 44 |
continue
|
| 45 |
|
|
@@ -54,6 +57,8 @@ def get_speaker_embeddings(audio_path, diarization, model_name="pyannote/embeddi
|
|
| 54 |
|
| 55 |
# Reshape the segment to match the model's expected input
|
| 56 |
segment = segment.unsqueeze(0) # Add batch dimension
|
|
|
|
|
|
|
| 57 |
|
| 58 |
with torch.no_grad():
|
| 59 |
embedding = model(segment) # Pass the tensor directly, not a dictionary
|
|
|
|
| 33 |
model.eval() # Set the model to evaluation mode
|
| 34 |
|
| 35 |
waveform, sample_rate = torchaudio.load(audio_path)
|
| 36 |
+
print(f"Sample rate: {sample_rate}")
|
| 37 |
embeddings = []
|
| 38 |
|
| 39 |
for turn, _, speaker in diarization.itertracks(yield_label=True):
|
|
|
|
| 41 |
end_frame = int(turn.end * sample_rate)
|
| 42 |
|
| 43 |
segment = waveform[:, start_frame:end_frame]
|
| 44 |
+
print(f"Segment shape before processing: {segment.shape}")
|
| 45 |
+
|
| 46 |
if segment.shape[1] == 0:
|
| 47 |
continue
|
| 48 |
|
|
|
|
| 57 |
|
| 58 |
# Reshape the segment to match the model's expected input
|
| 59 |
segment = segment.unsqueeze(0) # Add batch dimension
|
| 60 |
+
|
| 61 |
+
print(f"Segment shape after processing: {segment.shape}")
|
| 62 |
|
| 63 |
with torch.no_grad():
|
| 64 |
embedding = model(segment) # Pass the tensor directly, not a dictionary
|