Update visualization.py
Browse files- visualization.py +52 -47
visualization.py
CHANGED
@@ -11,12 +11,22 @@ from moviepy.editor import VideoFileClip, AudioFileClip, CompositeVideoClip, Ima
|
|
11 |
from moviepy.video.fx.all import resize
|
12 |
from PIL import Image, ImageDraw, ImageFont
|
13 |
from matplotlib.patches import Rectangle
|
14 |
-
from utils import seconds_to_timecode
|
15 |
-
from anomaly_detection import determine_anomalies
|
16 |
from scipy import interpolate
|
17 |
-
import gradio as gr
|
18 |
import os
|
19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
def plot_mse(df, mse_values, title, color='navy', time_threshold=3, anomaly_threshold=4):
|
21 |
plt.figure(figsize=(16, 8), dpi=300)
|
22 |
fig, ax = plt.subplots(figsize=(16, 8))
|
@@ -67,7 +77,6 @@ def plot_mse(df, mse_values, title, color='navy', time_threshold=3, anomaly_thre
|
|
67 |
ax.plot(segment_df['Seconds'], mean, color=color, linewidth=0.5)
|
68 |
ax.fill_between(segment_df['Seconds'], mean - std, mean + std, color=color, alpha=0.1)
|
69 |
|
70 |
-
# Rest of the function remains the same
|
71 |
median = np.median(mse_values)
|
72 |
ax.axhline(y=median, color='black', linestyle='--', label='Median Baseline')
|
73 |
|
@@ -127,7 +136,6 @@ def plot_mse(df, mse_values, title, color='navy', time_threshold=3, anomaly_thre
|
|
127 |
plt.close()
|
128 |
return fig, anomaly_frames
|
129 |
|
130 |
-
|
131 |
def plot_mse_histogram(mse_values, title, anomaly_threshold, color='blue'):
|
132 |
plt.figure(figsize=(16, 3), dpi=300)
|
133 |
fig, ax = plt.subplots(figsize=(16, 3))
|
@@ -147,7 +155,6 @@ def plot_mse_histogram(mse_values, title, anomaly_threshold, color='blue'):
|
|
147 |
plt.close()
|
148 |
return fig
|
149 |
|
150 |
-
|
151 |
def plot_mse_heatmap(mse_values, title, df):
|
152 |
plt.figure(figsize=(20, 3), dpi=300)
|
153 |
fig, ax = plt.subplots(figsize=(20, 3))
|
@@ -192,7 +199,6 @@ def plot_posture(df, posture_scores, color='blue', anomaly_threshold=3):
|
|
192 |
# Create a new dataframe for posture data
|
193 |
posture_df = pd.DataFrame({'Frame': posture_frames, 'Score': posture_scores})
|
194 |
|
195 |
-
|
196 |
posture_df = posture_df.merge(df[['Frame', 'Seconds']], on='Frame', how='inner')
|
197 |
|
198 |
ax.scatter(posture_df['Seconds'], posture_df['Score'], color=color, alpha=0.3, s=5)
|
@@ -243,6 +249,40 @@ def filter_mse_for_most_frequent_person(df, mse_embeddings, mse_posture, mse_voi
|
|
243 |
|
244 |
return mse_embeddings_filtered, mse_posture_filtered, mse_voice_filtered
|
245 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
246 |
def create_video_with_heatmap(video_path, df, mse_embeddings, mse_posture, mse_voice, output_folder, desired_fps, most_frequent_person_frames):
|
247 |
print(f"Creating heatmap video. Output folder: {output_folder}")
|
248 |
|
@@ -275,6 +315,11 @@ def create_video_with_heatmap(video_path, df, mse_embeddings, mse_posture, mse_v
|
|
275 |
video_frame = video.get_frame(t)
|
276 |
heatmap_frame = create_heatmap(t, mse_embeddings_filtered, mse_posture_filtered, mse_voice_filtered, video.fps, total_frames, width)
|
277 |
heatmap_frame_resized = cv2.resize(heatmap_frame, (width, heatmap_frame.shape[0]))
|
|
|
|
|
|
|
|
|
|
|
278 |
combined_frame = np.vstack((video_frame, heatmap_frame_resized))
|
279 |
return combined_frame
|
280 |
|
@@ -296,46 +341,6 @@ def create_video_with_heatmap(video_path, df, mse_embeddings, mse_posture, mse_v
|
|
296 |
print(f"Failed to create heatmap video at: {heatmap_video_path}")
|
297 |
return None
|
298 |
|
299 |
-
def create_heatmap(t, mse_embeddings_filtered, mse_posture_filtered, mse_voice_filtered, fps, total_frames, width):
|
300 |
-
# Normalize the MSE values
|
301 |
-
mse_embeddings_norm = normalize_mse(mse_embeddings_filtered)
|
302 |
-
mse_posture_norm = normalize_mse(mse_posture_filtered)
|
303 |
-
mse_voice_norm = normalize_mse(mse_voice_filtered)
|
304 |
-
|
305 |
-
# Debug prints
|
306 |
-
print(f"mse_embeddings_norm shape: {mse_embeddings_norm.shape}")
|
307 |
-
print(f"mse_posture_norm shape: {mse_posture_norm.shape}")
|
308 |
-
print(f"mse_voice_norm shape: {mse_voice_norm.shape}")
|
309 |
-
|
310 |
-
# Ensure combined_mse has the correct shape
|
311 |
-
combined_mse = np.zeros((total_frames, width))
|
312 |
-
|
313 |
-
# Adjust shapes and pad with zeros if necessary
|
314 |
-
mse_embeddings_norm = pad_or_trim_array(mse_embeddings_norm, width)
|
315 |
-
mse_posture_norm = pad_or_trim_array(mse_posture_norm, width)
|
316 |
-
mse_voice_norm = pad_or_trim_array(mse_voice_norm, width)
|
317 |
-
|
318 |
-
combined_mse[0] = mse_embeddings_norm
|
319 |
-
# Assuming you combine posture and voice MSEs similarly
|
320 |
-
combined_mse[1] = mse_posture_norm
|
321 |
-
combined_mse[2] = mse_voice_norm
|
322 |
-
|
323 |
-
# Return or use combined_mse as needed
|
324 |
-
return combined_mse
|
325 |
-
|
326 |
-
def normalize_mse(mse):
|
327 |
-
# Your normalization logic here
|
328 |
-
return mse / np.max(mse)
|
329 |
-
|
330 |
-
def pad_or_trim_array(arr, target_length):
|
331 |
-
if len(arr) > target_length:
|
332 |
-
# Trim the array
|
333 |
-
return arr[:target_length]
|
334 |
-
elif len(arr) < target_length:
|
335 |
-
# Pad the array with zeros
|
336 |
-
return np.pad(arr, (0, target_length - len(arr)), 'constant')
|
337 |
-
return arr
|
338 |
-
|
339 |
def plot_correlation_heatmap(mse_embeddings, mse_posture, mse_voice):
|
340 |
data = np.vstack((mse_embeddings, mse_posture, mse_voice)).T
|
341 |
df = pd.DataFrame(data, columns=["Facial Features", "Body Posture", "Voice"])
|
|
|
11 |
from moviepy.video.fx.all import resize
|
12 |
from PIL import Image, ImageDraw, ImageFont
|
13 |
from matplotlib.patches import Rectangle
|
|
|
|
|
14 |
from scipy import interpolate
|
|
|
15 |
import os
|
16 |
|
17 |
+
# Utility functions
|
18 |
+
def seconds_to_timecode(seconds):
|
19 |
+
hours = seconds // 3600
|
20 |
+
minutes = (seconds % 3600) // 60
|
21 |
+
seconds = seconds % 60
|
22 |
+
return f"{int(hours):02d}:{int(minutes):02d}:{int(seconds):02d}"
|
23 |
+
|
24 |
+
def determine_anomalies(values, threshold):
|
25 |
+
mean = np.mean(values)
|
26 |
+
std = np.std(values)
|
27 |
+
anomalies = np.where(values > mean + threshold * std)[0]
|
28 |
+
return anomalies
|
29 |
+
|
30 |
def plot_mse(df, mse_values, title, color='navy', time_threshold=3, anomaly_threshold=4):
|
31 |
plt.figure(figsize=(16, 8), dpi=300)
|
32 |
fig, ax = plt.subplots(figsize=(16, 8))
|
|
|
77 |
ax.plot(segment_df['Seconds'], mean, color=color, linewidth=0.5)
|
78 |
ax.fill_between(segment_df['Seconds'], mean - std, mean + std, color=color, alpha=0.1)
|
79 |
|
|
|
80 |
median = np.median(mse_values)
|
81 |
ax.axhline(y=median, color='black', linestyle='--', label='Median Baseline')
|
82 |
|
|
|
136 |
plt.close()
|
137 |
return fig, anomaly_frames
|
138 |
|
|
|
139 |
def plot_mse_histogram(mse_values, title, anomaly_threshold, color='blue'):
|
140 |
plt.figure(figsize=(16, 3), dpi=300)
|
141 |
fig, ax = plt.subplots(figsize=(16, 3))
|
|
|
155 |
plt.close()
|
156 |
return fig
|
157 |
|
|
|
158 |
def plot_mse_heatmap(mse_values, title, df):
|
159 |
plt.figure(figsize=(20, 3), dpi=300)
|
160 |
fig, ax = plt.subplots(figsize=(20, 3))
|
|
|
199 |
# Create a new dataframe for posture data
|
200 |
posture_df = pd.DataFrame({'Frame': posture_frames, 'Score': posture_scores})
|
201 |
|
|
|
202 |
posture_df = posture_df.merge(df[['Frame', 'Seconds']], on='Frame', how='inner')
|
203 |
|
204 |
ax.scatter(posture_df['Seconds'], posture_df['Score'], color=color, alpha=0.3, s=5)
|
|
|
249 |
|
250 |
return mse_embeddings_filtered, mse_posture_filtered, mse_voice_filtered
|
251 |
|
252 |
+
def normalize_mse(mse):
|
253 |
+
return mse / np.max(mse) if np.max(mse) > 0 else mse
|
254 |
+
|
255 |
+
def pad_or_trim_array(arr, target_length):
|
256 |
+
if len(arr) > target_length:
|
257 |
+
return arr[:target_length]
|
258 |
+
elif len(arr) < target_length:
|
259 |
+
return np.pad(arr, (0, target_length - len(arr)), 'constant')
|
260 |
+
return arr
|
261 |
+
|
262 |
+
def create_heatmap(t, mse_embeddings_filtered, mse_posture_filtered, mse_voice_filtered, fps, total_frames, width):
|
263 |
+
frame_index = int(t * fps)
|
264 |
+
|
265 |
+
# Normalize the MSE values
|
266 |
+
mse_embeddings_norm = normalize_mse(mse_embeddings_filtered)
|
267 |
+
mse_posture_norm = normalize_mse(mse_posture_filtered)
|
268 |
+
mse_voice_norm = normalize_mse(mse_voice_filtered)
|
269 |
+
|
270 |
+
# Ensure all arrays have the correct length
|
271 |
+
mse_embeddings_norm = pad_or_trim_array(mse_embeddings_norm, total_frames)
|
272 |
+
mse_posture_norm = pad_or_trim_array(mse_posture_norm, total_frames)
|
273 |
+
mse_voice_norm = pad_or_trim_array(mse_voice_norm, total_frames)
|
274 |
+
|
275 |
+
# Create a 3D array for the heatmap (height, width, channels)
|
276 |
+
heatmap_height = 3 # Assuming you want 3 rows in your heatmap
|
277 |
+
heatmap_frame = np.zeros((heatmap_height, width, 3), dtype=np.uint8)
|
278 |
+
|
279 |
+
# Fill the heatmap frame with color based on MSE values
|
280 |
+
heatmap_frame[0, :, 0] = (mse_embeddings_norm[frame_index] * 255).astype(np.uint8) # Red channel for facial features
|
281 |
+
heatmap_frame[1, :, 1] = (mse_posture_norm[frame_index] * 255).astype(np.uint8) # Green channel for body posture
|
282 |
+
heatmap_frame[2, :, 2] = (mse_voice_norm[frame_index] * 255).astype(np.uint8) # Blue channel for voice
|
283 |
+
|
284 |
+
return heatmap_frame
|
285 |
+
|
286 |
def create_video_with_heatmap(video_path, df, mse_embeddings, mse_posture, mse_voice, output_folder, desired_fps, most_frequent_person_frames):
|
287 |
print(f"Creating heatmap video. Output folder: {output_folder}")
|
288 |
|
|
|
315 |
video_frame = video.get_frame(t)
|
316 |
heatmap_frame = create_heatmap(t, mse_embeddings_filtered, mse_posture_filtered, mse_voice_filtered, video.fps, total_frames, width)
|
317 |
heatmap_frame_resized = cv2.resize(heatmap_frame, (width, heatmap_frame.shape[0]))
|
318 |
+
|
319 |
+
# Ensure both frames have the same number of channels
|
320 |
+
if video_frame.shape[2] != heatmap_frame_resized.shape[2]:
|
321 |
+
heatmap_frame_resized = cv2.cvtColor(heatmap_frame_resized, cv2.COLOR_RGB2BGR)
|
322 |
+
|
323 |
combined_frame = np.vstack((video_frame, heatmap_frame_resized))
|
324 |
return combined_frame
|
325 |
|
|
|
341 |
print(f"Failed to create heatmap video at: {heatmap_video_path}")
|
342 |
return None
|
343 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
344 |
def plot_correlation_heatmap(mse_embeddings, mse_posture, mse_voice):
|
345 |
data = np.vstack((mse_embeddings, mse_posture, mse_voice)).T
|
346 |
df = pd.DataFrame(data, columns=["Facial Features", "Body Posture", "Voice"])
|