reab5555 commited on
Commit
461f83c
·
verified ·
1 Parent(s): bcdf21f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -6
app.py CHANGED
@@ -30,10 +30,10 @@ matplotlib.rcParams['savefig.dpi'] = 400
30
  # Initialize models and other global variables
31
  device = 'cuda'
32
 
33
- mtcnn = MTCNN(keep_all=False, device=device, thresholds=[0.98, 0.98, 0.98], min_face_size=100)
34
  model = InceptionResnetV1(pretrained='vggface2').eval().to(device)
35
  mp_face_mesh = mp.solutions.face_mesh
36
- face_mesh = mp_face_mesh.FaceMesh(static_image_mode=False, max_num_faces=1, min_detection_confidence=0.7)
37
  emotion_detector = FER(mtcnn=False)
38
 
39
 
@@ -277,7 +277,7 @@ class LSTMAutoencoder(nn.Module):
277
  return out
278
 
279
 
280
- def lstm_anomaly_detection(X, feature_columns, raw_embedding_columns, epochs=100, batch_size=64):
281
  device = 'cuda'
282
  X = torch.FloatTensor(X).to(device)
283
  if X.dim() == 2:
@@ -322,7 +322,7 @@ def lstm_anomaly_detection(X, feature_columns, raw_embedding_columns, epochs=100
322
 
323
  return mse_all, mse_comp, mse_raw
324
 
325
- def embedding_anomaly_detection(embeddings, epochs=100, batch_size=64):
326
  device = 'cuda'
327
  X = torch.FloatTensor(embeddings).to(device)
328
  if X.dim() == 2:
@@ -349,7 +349,7 @@ def embedding_anomaly_detection(embeddings, epochs=100, batch_size=64):
349
  mse = np.mean(np.power(X.squeeze(0).cpu().numpy() - reconstructed, 2), axis=1)
350
  return mse
351
 
352
- def determine_anomalies(mse_values, threshold=4):
353
  mean = np.mean(mse_values)
354
  std = np.std(mse_values)
355
  anomalies = mse_values > (mean + threshold * std)
@@ -558,7 +558,7 @@ iface = gr.Interface(
558
  inputs=[
559
  gr.Video(),
560
  gr.Slider(minimum=1, maximum=20, step=1, value=10, label="Desired FPS"),
561
- gr.Slider(minimum=1, maximum=32, step=1, value=16, label="Batch Size")
562
  ],
563
  outputs=[
564
  gr.Textbox(label="Anomaly Detection Results"),
 
30
  # Initialize models and other global variables
31
  device = 'cuda'
32
 
33
+ mtcnn = MTCNN(keep_all=False, device=device, thresholds=[0.985, 0.985, 0.985], min_face_size=80)
34
  model = InceptionResnetV1(pretrained='vggface2').eval().to(device)
35
  mp_face_mesh = mp.solutions.face_mesh
36
+ face_mesh = mp_face_mesh.FaceMesh(static_image_mode=False, max_num_faces=1, min_detection_confidence=0.8)
37
  emotion_detector = FER(mtcnn=False)
38
 
39
 
 
277
  return out
278
 
279
 
280
+ def lstm_anomaly_detection(X, feature_columns, raw_embedding_columns, epochs=100, batch_size=8):
281
  device = 'cuda'
282
  X = torch.FloatTensor(X).to(device)
283
  if X.dim() == 2:
 
322
 
323
  return mse_all, mse_comp, mse_raw
324
 
325
+ def embedding_anomaly_detection(embeddings, epochs=100, batch_size=8):
326
  device = 'cuda'
327
  X = torch.FloatTensor(embeddings).to(device)
328
  if X.dim() == 2:
 
349
  mse = np.mean(np.power(X.squeeze(0).cpu().numpy() - reconstructed, 2), axis=1)
350
  return mse
351
 
352
+ def determine_anomalies(mse_values, threshold=5):
353
  mean = np.mean(mse_values)
354
  std = np.std(mse_values)
355
  anomalies = mse_values > (mean + threshold * std)
 
558
  inputs=[
559
  gr.Video(),
560
  gr.Slider(minimum=1, maximum=20, step=1, value=10, label="Desired FPS"),
561
+ gr.Slider(minimum=1, maximum=32, step=1, value=8, label="Batch Size")
562
  ],
563
  outputs=[
564
  gr.Textbox(label="Anomaly Detection Results"),