Update visualization.py
Browse files- visualization.py +8 -30
visualization.py
CHANGED
@@ -217,12 +217,18 @@ def plot_posture(df, posture_scores, color='blue', anomaly_threshold=3):
|
|
217 |
plt.close()
|
218 |
return fig
|
219 |
|
220 |
-
|
221 |
def filter_mse_for_most_frequent_person(df, mse_embeddings, mse_posture, mse_voice, most_frequent_person_frames):
|
222 |
# Ensure most_frequent_person_frames is a list
|
223 |
if not isinstance(most_frequent_person_frames, (list, np.ndarray)):
|
224 |
most_frequent_person_frames = [most_frequent_person_frames]
|
225 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
226 |
# Create a mask for the most frequent person frames
|
227 |
mask = df['Frame'].isin(most_frequent_person_frames)
|
228 |
|
@@ -233,7 +239,6 @@ def filter_mse_for_most_frequent_person(df, mse_embeddings, mse_posture, mse_voi
|
|
233 |
|
234 |
return mse_embeddings_filtered, mse_posture_filtered, mse_voice_filtered
|
235 |
|
236 |
-
|
237 |
def create_video_with_heatmap(video_path, df, mse_embeddings, mse_posture, mse_voice, output_folder, desired_fps, most_frequent_person_frames):
|
238 |
print(f"Creating heatmap video. Output folder: {output_folder}")
|
239 |
|
@@ -287,7 +292,7 @@ def create_video_with_heatmap(video_path, df, mse_embeddings, mse_posture, mse_v
|
|
287 |
print(f"Failed to create heatmap video at: {heatmap_video_path}")
|
288 |
return None
|
289 |
|
290 |
-
|
291 |
def create_heatmap(t, mse_embeddings, mse_posture, mse_voice, video_fps, total_frames, video_width):
|
292 |
frame_count = int(t * video_fps)
|
293 |
|
@@ -317,34 +322,7 @@ def create_heatmap(t, mse_embeddings, mse_posture, mse_voice, video_fps, total_f
|
|
317 |
heatmap_img = heatmap_img.reshape(canvas.get_width_height()[::-1] + (3,))
|
318 |
plt.close(fig)
|
319 |
return heatmap_img
|
320 |
-
|
321 |
-
def combine_video_and_heatmap(t):
|
322 |
-
video_frame = video.get_frame(t)
|
323 |
-
heatmap_frame = create_heatmap(t, mse_embeddings, mse_posture, mse_voice, video.fps, total_frames, width)
|
324 |
-
heatmap_frame_resized = cv2.resize(heatmap_frame, (width, heatmap_frame.shape[0]))
|
325 |
-
combined_frame = np.vstack((video_frame, heatmap_frame_resized))
|
326 |
-
return combined_frame
|
327 |
-
|
328 |
-
final_clip = VideoClip(combine_video_and_heatmap, duration=video.duration)
|
329 |
-
final_clip = final_clip.set_audio(video.audio)
|
330 |
-
|
331 |
-
# Write the final video
|
332 |
-
final_clip.write_videofile(heatmap_video_path, codec='libx264', audio_codec='aac', fps=video.fps)
|
333 |
-
|
334 |
-
# Close the video clips
|
335 |
-
video.close()
|
336 |
-
final_clip.close()
|
337 |
-
|
338 |
-
if os.path.exists(heatmap_video_path):
|
339 |
-
print(f"Heatmap video created at: {heatmap_video_path}")
|
340 |
-
print(f"Heatmap video size: {os.path.getsize(heatmap_video_path)} bytes")
|
341 |
-
return heatmap_video_path
|
342 |
-
else:
|
343 |
-
print(f"Failed to create heatmap video at: {heatmap_video_path}")
|
344 |
-
return None
|
345 |
-
|
346 |
|
347 |
-
# Function to create the correlation heatmap
|
348 |
def plot_correlation_heatmap(mse_embeddings, mse_posture, mse_voice):
|
349 |
data = np.vstack((mse_embeddings, mse_posture, mse_voice)).T
|
350 |
df = pd.DataFrame(data, columns=["Facial Features", "Body Posture", "Voice"])
|
|
|
217 |
plt.close()
|
218 |
return fig
|
219 |
|
|
|
220 |
def filter_mse_for_most_frequent_person(df, mse_embeddings, mse_posture, mse_voice, most_frequent_person_frames):
|
221 |
# Ensure most_frequent_person_frames is a list
|
222 |
if not isinstance(most_frequent_person_frames, (list, np.ndarray)):
|
223 |
most_frequent_person_frames = [most_frequent_person_frames]
|
224 |
|
225 |
+
# Ensure df and mse arrays have the same length
|
226 |
+
min_length = min(len(df), len(mse_embeddings), len(mse_posture), len(mse_voice))
|
227 |
+
df = df.iloc[:min_length].copy()
|
228 |
+
mse_embeddings = mse_embeddings[:min_length]
|
229 |
+
mse_posture = mse_posture[:min_length]
|
230 |
+
mse_voice = mse_voice[:min_length]
|
231 |
+
|
232 |
# Create a mask for the most frequent person frames
|
233 |
mask = df['Frame'].isin(most_frequent_person_frames)
|
234 |
|
|
|
239 |
|
240 |
return mse_embeddings_filtered, mse_posture_filtered, mse_voice_filtered
|
241 |
|
|
|
242 |
def create_video_with_heatmap(video_path, df, mse_embeddings, mse_posture, mse_voice, output_folder, desired_fps, most_frequent_person_frames):
|
243 |
print(f"Creating heatmap video. Output folder: {output_folder}")
|
244 |
|
|
|
292 |
print(f"Failed to create heatmap video at: {heatmap_video_path}")
|
293 |
return None
|
294 |
|
295 |
+
# Define the create_heatmap function
|
296 |
def create_heatmap(t, mse_embeddings, mse_posture, mse_voice, video_fps, total_frames, video_width):
|
297 |
frame_count = int(t * video_fps)
|
298 |
|
|
|
322 |
heatmap_img = heatmap_img.reshape(canvas.get_width_height()[::-1] + (3,))
|
323 |
plt.close(fig)
|
324 |
return heatmap_img
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
325 |
|
|
|
326 |
def plot_correlation_heatmap(mse_embeddings, mse_posture, mse_voice):
|
327 |
data = np.vstack((mse_embeddings, mse_posture, mse_voice)).T
|
328 |
df = pd.DataFrame(data, columns=["Facial Features", "Body Posture", "Voice"])
|