Update app.py
Browse files
app.py
CHANGED
@@ -53,13 +53,10 @@ def process_and_show_completion(video_input_path, anomaly_threshold_input, fps,
|
|
53 |
|
54 |
with gr.Blocks() as iface:
|
55 |
gr.Markdown("""
|
56 |
-
#
|
57 |
|
58 |
-
|
59 |
-
It
|
60 |
-
then uses machine learning techniques to identify unusual patterns or deviations from the norm.
|
61 |
-
|
62 |
-
For more information, visit: [https://github.com/reab5555/Facial-Expression-Anomaly-Detection](https://github.com/reab5555/Facial-Expression-Anomaly-Detection)
|
63 |
""")
|
64 |
|
65 |
with gr.Row():
|
@@ -101,15 +98,6 @@ with gr.Blocks() as iface:
|
|
101 |
mse_heatmap_embeddings_store = gr.State()
|
102 |
mse_heatmap_posture_store = gr.State()
|
103 |
|
104 |
-
def format_anomaly_sentences(anomaly_sentences, anomaly_type):
|
105 |
-
output = f"Sentences before {anomaly_type} Anomalies:\n\n"
|
106 |
-
for anomaly_timecode, sentences in anomaly_sentences:
|
107 |
-
output += f"Anomaly at {anomaly_timecode}:\n"
|
108 |
-
for sentence_timecode, sentence in sentences:
|
109 |
-
output += f" [{sentence_timecode}] {sentence}\n"
|
110 |
-
output += "\n"
|
111 |
-
return output
|
112 |
-
|
113 |
process_btn.click(
|
114 |
process_and_show_completion,
|
115 |
inputs=[video_input, anomaly_threshold, fps_slider],
|
|
|
53 |
|
54 |
with gr.Blocks() as iface:
|
55 |
gr.Markdown("""
|
56 |
+
# Multimodal Behavioral Anomalies Detection
|
57 |
|
58 |
+
The purpose of this tool is to detect anomalies in facial expressions and body language over the timeline of a video.
|
59 |
+
It extracts faces and postures from video frames, detects unique facial features and body postures, and analyzes them to identify anomalies using time series analysis, specifically utilizing a variational autoencoder (VAE) approach.
|
|
|
|
|
|
|
60 |
""")
|
61 |
|
62 |
with gr.Row():
|
|
|
98 |
mse_heatmap_embeddings_store = gr.State()
|
99 |
mse_heatmap_posture_store = gr.State()
|
100 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
process_btn.click(
|
102 |
process_and_show_completion,
|
103 |
inputs=[video_input, anomaly_threshold, fps_slider],
|