Update voice_analysis.py
Browse files- voice_analysis.py +32 -6
voice_analysis.py
CHANGED
@@ -32,6 +32,10 @@ def get_speaker_embeddings(audio_path, diarization, model_name="pyannote/embeddi
|
|
32 |
if waveform.shape[0] == 2:
|
33 |
waveform = torch.mean(waveform, dim=0, keepdim=True)
|
34 |
|
|
|
|
|
|
|
|
|
35 |
embeddings = []
|
36 |
for turn, _, speaker in diarization.itertracks(yield_label=True):
|
37 |
start_frame = int(turn.start * sample_rate)
|
@@ -39,16 +43,38 @@ def get_speaker_embeddings(audio_path, diarization, model_name="pyannote/embeddi
|
|
39 |
segment = waveform[:, start_frame:end_frame]
|
40 |
|
41 |
if segment.shape[1] > 0:
|
42 |
-
#
|
43 |
-
segment
|
|
|
|
|
44 |
|
45 |
-
|
46 |
-
|
47 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
|
49 |
# Ensure embeddings cover the entire duration
|
50 |
if embeddings and embeddings[-1]['time'] + embeddings[-1]['duration'] < duration:
|
51 |
-
embeddings.append({
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
return embeddings, duration
|
54 |
|
|
|
32 |
if waveform.shape[0] == 2:
|
33 |
waveform = torch.mean(waveform, dim=0, keepdim=True)
|
34 |
|
35 |
+
# Minimum segment duration (in seconds)
|
36 |
+
min_segment_duration = 0.5
|
37 |
+
min_segment_length = int(min_segment_duration * sample_rate)
|
38 |
+
|
39 |
embeddings = []
|
40 |
for turn, _, speaker in diarization.itertracks(yield_label=True):
|
41 |
start_frame = int(turn.start * sample_rate)
|
|
|
43 |
segment = waveform[:, start_frame:end_frame]
|
44 |
|
45 |
if segment.shape[1] > 0:
|
46 |
+
# Pad short segments
|
47 |
+
if segment.shape[1] < min_segment_length:
|
48 |
+
padding = torch.zeros(1, min_segment_length - segment.shape[1])
|
49 |
+
segment = torch.cat([segment, padding], dim=1)
|
50 |
|
51 |
+
# Split long segments
|
52 |
+
for i in range(0, segment.shape[1], min_segment_length):
|
53 |
+
sub_segment = segment[:, i:i+min_segment_length]
|
54 |
+
if sub_segment.shape[1] < min_segment_length:
|
55 |
+
padding = torch.zeros(1, min_segment_length - sub_segment.shape[1])
|
56 |
+
sub_segment = torch.cat([sub_segment, padding], dim=1)
|
57 |
+
|
58 |
+
# Ensure the segment is on the correct device
|
59 |
+
sub_segment = sub_segment.to(model.device)
|
60 |
+
|
61 |
+
with torch.no_grad():
|
62 |
+
embedding = model(sub_segment)
|
63 |
+
embeddings.append({
|
64 |
+
"time": turn.start + i / sample_rate,
|
65 |
+
"duration": min_segment_duration,
|
66 |
+
"embedding": embedding.cpu().numpy(),
|
67 |
+
"speaker": speaker
|
68 |
+
})
|
69 |
|
70 |
# Ensure embeddings cover the entire duration
|
71 |
if embeddings and embeddings[-1]['time'] + embeddings[-1]['duration'] < duration:
|
72 |
+
embeddings.append({
|
73 |
+
"time": duration,
|
74 |
+
"duration": 0,
|
75 |
+
"embedding": np.zeros_like(embeddings[0]['embedding']),
|
76 |
+
"speaker": "silence"
|
77 |
+
})
|
78 |
|
79 |
return embeddings, duration
|
80 |
|