reab5555's picture
Update video_processing.py
7cb75b2 verified
import os
import cv2
import numpy as np
from moviepy.editor import VideoFileClip
import tempfile
import time
from PIL import Image, ImageDraw, ImageFont
import math
from face_analysis import get_face_embedding, cluster_faces, organize_faces_by_person
from pose_analysis import pose, calculate_posture_score, draw_pose_landmarks
from voice_analysis import get_speaker_embeddings, align_voice_embeddings, extract_audio_from_video, diarize_speakers
from anomaly_detection import anomaly_detection
from visualization import plot_mse, plot_mse_histogram, plot_mse_heatmap, plot_stacked_mse_heatmaps
from utils import frame_to_timecode
import pandas as pd
from facenet_pytorch import MTCNN
import torch
import mediapipe as mp
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
mtcnn = MTCNN(keep_all=False, device=device, thresholds=[0.98, 0.98, 0.98], min_face_size=200, post_process=False)
def extract_frames(video_path, output_folder, desired_fps, progress_callback=None):
os.makedirs(output_folder, exist_ok=True)
clip = VideoFileClip(video_path)
original_fps = clip.fps
duration = clip.duration
total_frames = int(duration * original_fps)
step = max(1, original_fps / desired_fps)
total_frames_to_extract = int(total_frames / step)
frame_count = 0
for t in np.arange(0, duration, step / original_fps):
frame = clip.get_frame(t)
cv2.imwrite(os.path.join(output_folder, f"frame_{frame_count:04d}.jpg"), cv2.cvtColor(frame, cv2.COLOR_RGB2BGR))
frame_count += 1
if progress_callback:
progress = min(100, (frame_count / total_frames_to_extract) * 100)
progress_callback(progress, f"Extracting frame")
if frame_count >= total_frames_to_extract:
break
clip.close()
return frame_count, original_fps
def is_frontal_face(face, landmarks):
if landmarks is None:
return False
left_eye = landmarks[0]
right_eye = landmarks[1]
nose = landmarks[2]
eye_angle = np.degrees(np.arctan2(right_eye[1] - left_eye[1], right_eye[0] - left_eye[0]))
eye_center = ((left_eye[0] + right_eye[0]) / 2, (left_eye[1] + right_eye[1]) / 2)
nose_deviation = abs(nose[0] - eye_center[0]) / face.shape[1]
return abs(eye_angle) < 10 and nose_deviation < 0.1
def process_frames(frames_folder, faces_folder, frame_count, progress):
embeddings_by_frame = {}
posture_scores_by_frame = {}
posture_landmarks_by_frame = {}
face_paths = []
frame_files = sorted([f for f in os.listdir(frames_folder) if f.endswith('.jpg')])
for i, frame_file in enumerate(frame_files):
frame_num = int(frame_file.split('_')[1].split('.')[0])
frame_path = os.path.join(frames_folder, frame_file)
frame = cv2.cvtColor(cv2.imread(frame_path), cv2.COLOR_BGR2RGB)
if frame is not None:
posture_score, posture_landmarks = calculate_posture_score(frame)
posture_scores_by_frame[frame_num] = posture_score
posture_landmarks_by_frame[frame_num] = posture_landmarks
boxes, probs, landmarks = mtcnn.detect(frame, landmarks=True)
if boxes is not None and len(boxes) > 0 and probs[0] >= 0.99:
x1, y1, x2, y2 = [int(b) for b in boxes[0]]
face = frame[y1:y2, x1:x2]
if face.size > 0 and is_frontal_face(face, landmarks[0]):
face_resized = cv2.resize(face, (160, 160))
output_path = os.path.join(faces_folder, f"frame_{frame_num}_face.jpg")
cv2.imwrite(output_path, cv2.cvtColor(face_resized, cv2.COLOR_RGB2BGR))
face_paths.append(output_path)
embedding = get_face_embedding(face_resized)
embeddings_by_frame[frame_num] = embedding
progress((i + 1) / len(frame_files), f"Processing frame {i + 1} of {len(frame_files)}")
return embeddings_by_frame, posture_scores_by_frame, posture_landmarks_by_frame, face_paths
def process_video(video_path, anomaly_threshold, desired_fps, progress=None):
start_time = time.time()
output_folder = "output"
os.makedirs(output_folder, exist_ok=True)
with tempfile.TemporaryDirectory() as temp_dir:
faces_folder = os.path.join(temp_dir, 'faces')
organized_faces_folder = os.path.join(temp_dir, 'organized_faces')
os.makedirs(faces_folder, exist_ok=True)
os.makedirs(organized_faces_folder, exist_ok=True)
clip = VideoFileClip(video_path)
video_duration = clip.duration
clip.close()
progress(0, "Starting frame extraction")
frames_folder = os.path.join(temp_dir, 'extracted_frames')
def extraction_progress(percent, message):
progress(percent / 100, f"Extracting frames")
frame_count, original_fps = extract_frames(video_path, frames_folder, desired_fps, extraction_progress)
progress(1, "Frame extraction complete")
progress(0.3, "Processing frames")
embeddings_by_frame, posture_scores_by_frame, posture_landmarks_by_frame, face_paths = process_frames(
frames_folder, faces_folder,
frame_count,
progress)
if not face_paths:
raise ValueError("No faces were extracted from the video.")
progress(0.6, "Clustering faces")
embeddings = [embedding for _, embedding in embeddings_by_frame.items()]
clusters = cluster_faces(embeddings)
num_clusters = len(set(clusters))
# Adding the 'Cluster' column to the DataFrame
cluster_by_frame = {frame_num: cluster for frame_num, cluster in zip(embeddings_by_frame.keys(), clusters)}
progress(0.65, "Organizing faces")
organize_faces_by_person(embeddings_by_frame, clusters, faces_folder, organized_faces_folder)
progress(0.7, "Saving person data")
df, largest_cluster = save_person_data(embeddings_by_frame, clusters, desired_fps,
original_fps, temp_dir, video_duration)
df['Seconds'] = df['Timecode'].apply(
lambda x: sum(float(t) * 60 ** i for i, t in enumerate(reversed(x.split(':')))))
df['Cluster'] = df['Frame'].map(cluster_by_frame)
progress(0.75, "Getting face samples")
face_samples = get_all_face_samples(organized_faces_folder, output_folder, largest_cluster)
progress(0.8, "Performing voice analysis")
audio_path = extract_audio_from_video(video_path)
diarization, most_frequent_speaker = diarize_speakers(audio_path)
voice_embeddings, audio_duration = get_speaker_embeddings(audio_path, diarization, most_frequent_speaker)
aligned_voice_embeddings = align_voice_embeddings(voice_embeddings, frame_count, original_fps, audio_duration)
progress(0.85, "Performing anomaly detection")
embedding_columns = [col for col in df.columns if col.startswith('Raw_Embedding_')]
X_embeddings = df[embedding_columns].values
X_posture = np.array([posture_scores_by_frame.get(frame, None) for frame in df['Frame']])
X_posture = X_posture[X_posture != None].reshape(-1, 1)
X_voice = np.array(aligned_voice_embeddings)
if len(X_voice) > len(X_embeddings):
X_voice = X_voice[:len(X_embeddings)]
elif len(X_voice) < len(X_embeddings):
padding = np.zeros((len(X_embeddings) - len(X_voice), X_voice.shape[1]))
X_voice = np.vstack((X_voice, padding))
try:
if len(X_posture) == 0:
raise ValueError("No valid posture data found")
mse_embeddings, mse_posture, mse_voice = anomaly_detection(X_embeddings, X_posture, X_voice)
progress(0.9, "Generating graphs")
mse_plot_embeddings, anomaly_frames_embeddings = plot_mse(df, mse_embeddings, "Facial Features",
color='navy',
anomaly_threshold=anomaly_threshold)
mse_histogram_embeddings = plot_mse_histogram(mse_embeddings, "MSE Distribution: Facial Features",
anomaly_threshold, color='navy')
mse_plot_posture, anomaly_frames_posture = plot_mse(df, mse_posture, "Body Posture",
color='purple',
anomaly_threshold=anomaly_threshold)
mse_histogram_posture = plot_mse_histogram(mse_posture, "MSE Distribution: Body Posture",
anomaly_threshold, color='purple')
mse_plot_voice, anomaly_frames_voice = plot_mse(df, mse_voice, "Voice",
color='green',
anomaly_threshold=anomaly_threshold)
mse_histogram_voice = plot_mse_histogram(mse_voice, "MSE Distribution: Voice",
anomaly_threshold, color='green')
mse_heatmap_embeddings = plot_mse_heatmap(mse_embeddings, "Facial Features MSE Heatmap", df)
mse_heatmap_posture = plot_mse_heatmap(mse_posture, "Body Posture MSE Heatmap", df)
mse_heatmap_voice = plot_mse_heatmap(mse_voice, "Voice MSE Heatmap", df)
stacked_heatmap = plot_stacked_mse_heatmaps(mse_embeddings, mse_posture, mse_voice, df, "Combined MSE Heatmaps")
progress(0.95, "Finishing generating graphs")
except Exception as e:
print(f"Error details: {str(e)}")
import traceback
traceback.print_exc()
return (f"Error in video processing: {str(e)}",) + (None,) * 26
progress(1.0, "Preparing results")
results = f"Number of persons detected: {num_clusters}\n\n"
results += "Breakdown:\n"
for cluster_id in range(num_clusters):
face_count = len([c for c in clusters if c == cluster_id])
results += f"Person {cluster_id + 1}: {face_count} face frames\n"
end_time = time.time()
execution_time = end_time - start_time
def add_timecode_to_image(image, timecode):
img_pil = Image.fromarray(image)
draw = ImageDraw.Draw(img_pil)
font = ImageFont.load_default()
draw.text((10, 10), timecode, (255, 0, 0), font=font)
return np.array(img_pil)
anomaly_faces_embeddings = []
for frame in anomaly_frames_embeddings:
face_path = os.path.join(faces_folder, f"frame_{frame}_face.jpg")
if os.path.exists(face_path):
face_img = cv2.imread(face_path)
if face_img is not None:
face_img = cv2.cvtColor(face_img, cv2.COLOR_BGR2RGB)
timecode = df[df['Frame'] == frame]['Timecode'].iloc[0]
face_img_with_timecode = add_timecode_to_image(face_img, timecode)
anomaly_faces_embeddings.append(face_img_with_timecode)
anomaly_frames_posture_images = []
for frame in anomaly_frames_posture:
frame_path = os.path.join(frames_folder, f"frame_{frame:04d}.jpg")
if os.path.exists(frame_path):
frame_img = cv2.imread(frame_path)
if frame_img is not None:
frame_img = cv2.cvtColor(frame_img, cv2.COLOR_BGR2RGB)
pose_results = pose.process(frame_img)
if pose_results.pose_landmarks:
frame_img = draw_pose_landmarks(frame_img, pose_results.pose_landmarks)
timecode = df[df['Frame'] == frame]['Timecode'].iloc[0]
frame_img_with_timecode = add_timecode_to_image(frame_img, timecode)
anomaly_frames_posture_images.append(frame_img_with_timecode)
return (
execution_time,
results,
df,
mse_embeddings,
mse_posture,
mse_voice,
mse_plot_embeddings,
mse_plot_posture,
mse_plot_voice,
mse_histogram_embeddings,
mse_histogram_posture,
mse_histogram_voice,
mse_heatmap_embeddings,
mse_heatmap_posture,
mse_heatmap_voice,
face_samples["most_frequent"],
anomaly_faces_embeddings,
anomaly_frames_posture_images,
faces_folder,
frames_folder,
stacked_heatmap
)
def save_person_data(embeddings_by_frame, clusters, desired_fps, original_fps, output_folder, video_duration):
person_data = {}
for (frame_num, embedding), cluster in zip(embeddings_by_frame.items(), clusters):
if cluster not in person_data:
person_data[cluster] = []
person_data[cluster].append((frame_num, embedding))
largest_cluster = max(person_data, key=lambda k: len(person_data[k]))
data = person_data[largest_cluster]
data.sort(key=lambda x: x[0])
frames, embeddings = zip(*data)
embeddings_array = np.array(embeddings)
np.save(os.path.join(output_folder, 'face_embeddings.npy'), embeddings_array)
total_frames = max(frames)
timecodes = [frame_to_timecode(frame, total_frames, video_duration) for frame in frames]
df_data = {
'Frame': frames,
'Timecode': timecodes,
'Embedding_Index': range(len(embeddings))
}
for i in range(len(embeddings[0])):
df_data[f'Raw_Embedding_{i}'] = [embedding[i] for embedding in embeddings]
df = pd.DataFrame(df_data)
return df, largest_cluster
def get_all_face_samples(organized_faces_folder, output_folder, largest_cluster, max_samples=200):
face_samples = {"most_frequent": [], "others": []}
for cluster_folder in sorted(os.listdir(organized_faces_folder)):
if cluster_folder.startswith("person_"):
person_folder = os.path.join(organized_faces_folder, cluster_folder)
face_files = sorted([f for f in os.listdir(person_folder) if f.endswith('.jpg')])
if face_files:
cluster_id = int(cluster_folder.split('_')[1])
if cluster_id == largest_cluster:
for i, sample in enumerate(face_files[:max_samples]):
face_path = os.path.join(person_folder, sample)
output_path = os.path.join(output_folder, f"face_sample_most_frequent_{i:04d}.jpg")
face_img = cv2.cvtColor(cv2.imread(face_path), cv2.COLOR_BGR2RGB)
if face_img is not None:
small_face = cv2.resize(face_img, (160, 160))
cv2.imwrite(output_path, cv2.cvtColor(small_face, cv2.COLOR_RGB2BGR))
face_samples["most_frequent"].append(output_path)
if len(face_samples["most_frequent"]) >= max_samples:
break
else:
remaining_samples = max_samples - len(face_samples["others"])
if remaining_samples > 0:
for i, sample in enumerate(face_files[:remaining_samples]):
face_path = os.path.join(person_folder, sample)
output_path = os.path.join(output_folder, f"face_sample_other_{cluster_id:02d}_{i:04d}.jpg")
face_img = cv2.cvtColor(cv2.imread(face_path), cv2.COLOR_BGR2RGB)
if face_img is not None:
small_face = cv2.resize(face_img, (160, 160))
cv2.imwrite(output_path, cv2.cvtColor(small_face, cv2.COLOR_RGB2BGR))
face_samples["others"].append(output_path)
if len(face_samples["others"]) >= max_samples:
break
return face_samples