Spaces:
Runtime error
Runtime error
import torch | |
import numpy as np | |
from facenet_pytorch import InceptionResnetV1 | |
from sklearn.cluster import DBSCAN | |
import os | |
import shutil | |
import mediapipe as mp | |
import cv2 | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model = InceptionResnetV1(pretrained='vggface2').eval().to(device) | |
def get_face_embedding(face_img): | |
face_tensor = torch.tensor(face_img).permute(2, 0, 1).unsqueeze(0).float() / 255 | |
face_tensor = (face_tensor - 0.5) / 0.5 | |
face_tensor = face_tensor.to(device) | |
with torch.no_grad(): | |
embedding = model(face_tensor) | |
return embedding.cpu().numpy().flatten() | |
def cluster_faces(embeddings): | |
if len(embeddings) < 2: | |
print("Not enough faces for clustering. Assigning all to one cluster.") | |
return np.zeros(len(embeddings), dtype=int) | |
X = np.stack(embeddings) | |
dbscan = DBSCAN(eps=0.3, min_samples=5, metric='cosine') | |
clusters = dbscan.fit_predict(X) | |
if np.all(clusters == -1): | |
print("DBSCAN assigned all to noise. Considering as one cluster.") | |
return np.zeros(len(embeddings), dtype=int) | |
return clusters | |
def organize_faces_by_person(embeddings_by_frame, clusters, faces_folder, organized_faces_folder): | |
for (frame_num, embedding), cluster in zip(embeddings_by_frame.items(), clusters): | |
person_folder = os.path.join(organized_faces_folder, f"person_{cluster}") | |
os.makedirs(person_folder, exist_ok=True) | |
src = os.path.join(faces_folder, f"frame_{frame_num}_face.jpg") | |
dst = os.path.join(person_folder, f"frame_{frame_num}_face.jpg") | |
shutil.copy(src, dst) | |