reab5555's picture
Update video_processing.py
6e235e7 verified
raw
history blame
15.5 kB
import os
import cv2
import numpy as np
from moviepy.editor import VideoFileClip
import tempfile
import time
from PIL import Image, ImageDraw, ImageFont
import math
from face_analysis import get_face_embedding, cluster_faces, organize_faces_by_person
from pose_analysis import pose, calculate_posture_score, draw_pose_landmarks
from voice_analysis import get_speaker_embeddings, align_voice_embeddings, extract_audio_from_video, diarize_speakers
from anomaly_detection import anomaly_detection
from visualization import plot_mse, plot_mse_histogram, plot_mse_heatmap, plot_stacked_mse_heatmaps
from utils import frame_to_timecode
import pandas as pd
from facenet_pytorch import MTCNN
import torch
import mediapipe as mp
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
mtcnn = MTCNN(keep_all=False, device=device, thresholds=[0.9, 0.9, 0.9], min_face_size=50)
def extract_frames(video_path, output_folder, desired_fps, progress_callback=None):
os.makedirs(output_folder, exist_ok=True)
clip = VideoFileClip(video_path)
original_fps = clip.fps
duration = clip.duration
total_frames = int(duration * original_fps)
step = max(1, original_fps / desired_fps)
total_frames_to_extract = int(total_frames / step)
frame_count = 0
for t in np.arange(0, duration, step / original_fps):
frame = clip.get_frame(t)
cv2.imwrite(os.path.join(output_folder, f"frame_{frame_count:04d}.jpg"), cv2.cvtColor(frame, cv2.COLOR_RGB2BGR))
frame_count += 1
if progress_callback:
progress = min(100, (frame_count / total_frames_to_extract) * 100)
progress_callback(progress, f"Extracting frame")
if frame_count >= total_frames_to_extract:
break
clip.close()
return frame_count, original_fps
def process_frames(frames_folder, aligned_faces_folder, frame_count, progress):
embeddings_by_frame = {}
posture_scores_by_frame = {}
posture_landmarks_by_frame = {}
aligned_face_paths = []
frame_files = sorted([f for f in os.listdir(frames_folder) if f.endswith('.jpg')])
for i, frame_file in enumerate(frame_files):
frame_num = int(frame_file.split('_')[1].split('.')[0])
frame_path = os.path.join(frames_folder, frame_file)
frame = cv2.imread(frame_path)
if frame is not None:
posture_score, posture_landmarks = calculate_posture_score(frame)
posture_scores_by_frame[frame_num] = posture_score
posture_landmarks_by_frame[frame_num] = posture_landmarks
boxes, probs = mtcnn.detect(frame)
if boxes is not None and len(boxes) > 0 and probs[0] >= 0.99:
x1, y1, x2, y2 = [int(b) for b in boxes[0]]
face = frame[y1:y2, x1:x2]
if face.size > 0:
face_rgb = cv2.cvtColor(face, cv2.COLOR_BGR2RGB)
face_resized = cv2.resize(face_rgb, (160, 160))
output_path = os.path.join(faces_folder, f"frame_{frame_num}_face.jpg")
cv2.imwrite(output_path, face_resized_resized)
face_paths.append(output_path)
embedding = get_face_embedding(face_resized)
embeddings_by_frame[frame_num] = embedding
progress((i + 1) / len(frame_files), f"Processing frame {i + 1} of {len(frame_files)}")
return embeddings_by_frame, posture_scores_by_frame, posture_landmarks_by_frame, aligned_face_paths
def process_video(video_path, anomaly_threshold, desired_fps, progress=None):
start_time = time.time()
output_folder = "output"
os.makedirs(output_folder, exist_ok=True)
with tempfile.TemporaryDirectory() as temp_dir:
faces_folder = os.path.join(temp_dir, 'faces')
organized_faces_folder = os.path.join(temp_dir, 'organized_faces')
os.makedirs(faces_folder, exist_ok=True)
os.makedirs(organized_faces_folder, exist_ok=True)
clip = VideoFileClip(video_path)
video_duration = clip.duration
clip.close()
progress(0, "Starting frame extraction")
frames_folder = os.path.join(temp_dir, 'extracted_frames')
def extraction_progress(percent, message):
progress(percent / 100, f"Extracting frames")
frame_count, original_fps = extract_frames(video_path, frames_folder, desired_fps, extraction_progress)
progress(1, "Frame extraction complete")
progress(0.3, "Processing frames")
embeddings_by_frame, posture_scores_by_frame, posture_landmarks_by_frame, face_paths = process_frames(
frames_folder, faces_folder,
frame_count,
progress)
if not face_paths:
raise ValueError("No faces were extracted from the video.")
progress(0.6, "Clustering faces")
embeddings = [embedding for _, embedding in embeddings_by_frame.items()]
clusters = cluster_faces(embeddings)
num_clusters = len(set(clusters))
# Adding the 'Cluster' column to the DataFrame
cluster_by_frame = {frame_num: cluster for frame_num, cluster in zip(embeddings_by_frame.keys(), clusters)}
progress(0.65, "Organizing faces")
organize_faces_by_person(embeddings_by_frame, clusters, faces_folder, organized_faces_folder)
progress(0.7, "Saving person data")
df, largest_cluster = save_person_data(embeddings_by_frame, clusters, desired_fps,
original_fps, temp_dir, video_duration)
df['Seconds'] = df['Timecode'].apply(
lambda x: sum(float(t) * 60 ** i for i, t in enumerate(reversed(x.split(':')))))
df['Cluster'] = df['Frame'].map(cluster_by_frame)
progress(0.75, "Getting face samples")
face_samples = get_all_face_samples(organized_faces_folder, output_folder, largest_cluster)
progress(0.8, "Performing voice analysis")
audio_path = extract_audio_from_video(video_path)
diarization, most_frequent_speaker = diarize_speakers(audio_path)
voice_embeddings, audio_duration = get_speaker_embeddings(audio_path, diarization, most_frequent_speaker)
aligned_voice_embeddings = align_voice_embeddings(voice_embeddings, frame_count, original_fps, audio_duration)
progress(0.85, "Performing anomaly detection")
embedding_columns = [col for col in df.columns if col.startswith('Raw_Embedding_')]
X_embeddings = df[embedding_columns].values
X_posture = np.array([posture_scores_by_frame.get(frame, None) for frame in df['Frame']])
X_posture = X_posture[X_posture != None].reshape(-1, 1)
X_voice = np.array(aligned_voice_embeddings)
if len(X_voice) > len(X_embeddings):
X_voice = X_voice[:len(X_embeddings)]
elif len(X_voice) < len(X_embeddings):
padding = np.zeros((len(X_embeddings) - len(X_voice), X_voice.shape[1]))
X_voice = np.vstack((X_voice, padding))
try:
if len(X_posture) == 0:
raise ValueError("No valid posture data found")
mse_embeddings, mse_posture, mse_voice = anomaly_detection(X_embeddings, X_posture, X_voice)
progress(0.9, "Generating graphs")
mse_plot_embeddings, anomaly_frames_embeddings = plot_mse(df, mse_embeddings, "Facial Features",
color='navy',
anomaly_threshold=anomaly_threshold)
mse_histogram_embeddings = plot_mse_histogram(mse_embeddings, "MSE Distribution: Facial Features",
anomaly_threshold, color='navy')
mse_plot_posture, anomaly_frames_posture = plot_mse(df, mse_posture, "Body Posture",
color='purple',
anomaly_threshold=anomaly_threshold)
mse_histogram_posture = plot_mse_histogram(mse_posture, "MSE Distribution: Body Posture",
anomaly_threshold, color='purple')
mse_plot_voice, anomaly_frames_voice = plot_mse(df, mse_voice, "Voice",
color='green',
anomaly_threshold=anomaly_threshold)
mse_histogram_voice = plot_mse_histogram(mse_voice, "MSE Distribution: Voice",
anomaly_threshold, color='green')
mse_heatmap_embeddings = plot_mse_heatmap(mse_embeddings, "Facial Features MSE Heatmap", df)
mse_heatmap_posture = plot_mse_heatmap(mse_posture, "Body Posture MSE Heatmap", df)
mse_heatmap_voice = plot_mse_heatmap(mse_voice, "Voice MSE Heatmap", df)
stacked_heatmap = plot_stacked_mse_heatmaps(mse_embeddings, mse_posture, mse_voice, df, "Combined MSE Heatmaps")
progress(0.95, "Finishing generating graphs")
except Exception as e:
print(f"Error details: {str(e)}")
import traceback
traceback.print_exc()
return (f"Error in video processing: {str(e)}",) + (None,) * 26
progress(1.0, "Preparing results")
results = f"Number of persons detected: {num_clusters}\n\n"
results += "Breakdown:\n"
for cluster_id in range(num_clusters):
face_count = len([c for c in clusters if c == cluster_id])
results += f"Person {cluster_id + 1}: {face_count} face frames\n"
end_time = time.time()
execution_time = end_time - start_time
def add_timecode_to_image(image, timecode):
img_pil = Image.fromarray(image)
draw = ImageDraw.Draw(img_pil)
font = ImageFont.load_default()
draw.text((10, 10), timecode, (255, 0, 0), font=font)
return np.array(img_pil)
anomaly_faces_embeddings = []
for frame in anomaly_frames_embeddings:
face_path = os.path.join(faces_folder, f"frame_{frame}_face.jpg")
if os.path.exists(face_path):
face_img = cv2.imread(face_path)
if face_img is not None:
face_img = cv2.cvtColor(face_img, cv2.COLOR_BGR2RGB)
timecode = df[df['Frame'] == frame]['Timecode'].iloc[0]
face_img_with_timecode = add_timecode_to_image(face_img, timecode)
anomaly_faces_embeddings.append(face_img_with_timecode)
anomaly_frames_posture_images = []
for frame in anomaly_frames_posture:
frame_path = os.path.join(frames_folder, f"frame_{frame:04d}.jpg")
if os.path.exists(frame_path):
frame_img = cv2.imread(frame_path)
if frame_img is not None:
frame_img = cv2.cvtColor(frame_img, cv2.COLOR_BGR2RGB)
pose_results = pose.process(frame_img)
if pose_results.pose_landmarks:
frame_img = draw_pose_landmarks(frame_img, pose_results.pose_landmarks)
timecode = df[df['Frame'] == frame]['Timecode'].iloc[0]
frame_img_with_timecode = add_timecode_to_image(frame_img, timecode)
anomaly_frames_posture_images.append(frame_img_with_timecode)
return (
execution_time,
results,
df,
mse_embeddings,
mse_posture,
mse_voice,
mse_plot_embeddings,
mse_plot_posture,
mse_plot_voice,
mse_histogram_embeddings,
mse_histogram_posture,
mse_histogram_voice,
mse_heatmap_embeddings,
mse_heatmap_posture,
mse_heatmap_voice,
face_samples["most_frequent"],
anomaly_faces_embeddings,
anomaly_frames_posture_images,
faces_folder,
frames_folder,
stacked_heatmap
)
def save_person_data(embeddings_by_frame, clusters, desired_fps, original_fps, output_folder, video_duration):
person_data = {}
for (frame_num, embedding), cluster in zip(embeddings_by_frame.items(), clusters):
if cluster not in person_data:
person_data[cluster] = []
person_data[cluster].append((frame_num, embedding))
largest_cluster = max(person_data, key=lambda k: len(person_data[k]))
data = person_data[largest_cluster]
data.sort(key=lambda x: x[0])
frames, embeddings = zip(*data)
embeddings_array = np.array(embeddings)
np.save(os.path.join(output_folder, 'face_embeddings.npy'), embeddings_array)
total_frames = max(frames)
timecodes = [frame_to_timecode(frame, total_frames, video_duration) for frame in frames]
df_data = {
'Frame': frames,
'Timecode': timecodes,
'Embedding_Index': range(len(embeddings))
}
for i in range(len(embeddings[0])):
df_data[f'Raw_Embedding_{i}'] = [embedding[i] for embedding in embeddings]
df = pd.DataFrame(df_data)
return df, largest_cluster
def get_all_face_samples(organized_faces_folder, output_folder, largest_cluster, max_samples=200):
face_samples = {"most_frequent": [], "others": []}
for cluster_folder in sorted(os.listdir(organized_faces_folder)):
if cluster_folder.startswith("person_"):
person_folder = os.path.join(organized_faces_folder, cluster_folder)
face_files = sorted([f for f in os.listdir(person_folder) if f.endswith('.jpg')])
if face_files:
cluster_id = int(cluster_folder.split('_')[1])
if cluster_id == largest_cluster:
for i, sample in enumerate(face_files[:max_samples]):
face_path = os.path.join(person_folder, sample)
output_path = os.path.join(output_folder, f"face_sample_most_frequent_{i:04d}.jpg")
face_img = cv2.imread(face_path)
if face_img is not None:
small_face = cv2.resize(face_img, (160, 160))
cv2.imwrite(output_path, small_face)
face_samples["most_frequent"].append(output_path)
if len(face_samples["most_frequent"]) >= max_samples:
break
else:
remaining_samples = max_samples - len(face_samples["others"])
if remaining_samples > 0:
for i, sample in enumerate(face_files[:remaining_samples]):
face_path = os.path.join(person_folder, sample)
output_path = os.path.join(output_folder, f"face_sample_other_{cluster_id:02d}_{i:04d}.jpg")
face_img = cv2.imread(face_path)
if face_img is not None:
small_face = cv2.resize(face_img, (160, 160))
cv2.imwrite(output_path, small_face)
face_samples["others"].append(output_path)
if len(face_samples["others"]) >= max_samples:
break
return face_samples