reab5555's picture
Update voice_analysis.py
38c3415 verified
raw
history blame
3.26 kB
import moviepy.editor as mp
from pyannote.audio import Pipeline
import torch
import torchaudio
from pyannote.audio import Pipeline
from pyannote.core import Segment
from pyannote.audio import Model
import os
def extract_audio_from_video(video_path):
video = mp.VideoFileClip(video_path)
audio_path = video_path.rsplit('.', 1)[0] + '.wav'
video.audio.write_audiofile(audio_path)
return audio_path
def diarize_speakers(audio_path):
hf_token = os.environ.get("py_annote_hf_token")
if not hf_token:
raise ValueError("py_annote_hf_token environment variable is not set. Please check your Hugging Face Space's Variables and secrets section.")
pipeline = Pipeline.from_pretrained("pyannote/speaker-diarization-3.1", use_auth_token=hf_token)
diarization = pipeline(audio_path)
return diarization
def get_speaker_embeddings(audio_path, diarization, model_name="pyannote/embedding"):
hf_token = os.environ.get("py_annote_hf_token")
if not hf_token:
raise ValueError("py_annote_hf_token environment variable is not set. Please check your Hugging Face Space's Variables and secrets section.")
model = Model.from_pretrained(model_name, use_auth_token=hf_token)
model.eval() # Set the model to evaluation mode
waveform, sample_rate = torchaudio.load(audio_path)
print(f"Sample rate: {sample_rate}")
print(f"Waveform shape: {waveform.shape}")
# Convert stereo to mono if necessary
if waveform.shape[0] == 2:
waveform = torch.mean(waveform, dim=0, keepdim=True)
embeddings = []
for turn, _, speaker in diarization.itertracks(yield_label=True):
start_frame = int(turn.start * sample_rate)
end_frame = int(turn.end * sample_rate)
segment = waveform[:, start_frame:end_frame]
print(f"Segment shape before processing: {segment.shape}")
if segment.shape[1] == 0:
continue
# Ensure the segment is long enough (at least 2 seconds)
if segment.shape[1] < 2 * sample_rate:
padding = torch.zeros(1, 2 * sample_rate - segment.shape[1])
segment = torch.cat([segment, padding], dim=1)
# Ensure the segment is not too long (maximum 10 seconds)
if segment.shape[1] > 10 * sample_rate:
segment = segment[:, :10 * sample_rate]
print(f"Segment shape after processing: {segment.shape}")
with torch.no_grad():
embedding = model(segment) # Pass the tensor directly, not a dictionary
embeddings.append({"time": turn.start, "embedding": embedding.squeeze().cpu().numpy(), "speaker": speaker})
return embeddings
def align_voice_embeddings(voice_embeddings, frame_count, fps):
aligned_embeddings = []
current_embedding_index = 0
for frame in range(frame_count):
frame_time = frame / fps
while (current_embedding_index < len(voice_embeddings) - 1 and
voice_embeddings[current_embedding_index + 1]["time"] <= frame_time):
current_embedding_index += 1
aligned_embeddings.append(voice_embeddings[current_embedding_index]["embedding"])
return np.array(aligned_embeddings)