|
import gradio as gr |
|
import time |
|
from video_processing import process_video |
|
from PIL import Image |
|
import matplotlib.pyplot as plt |
|
import numpy as np |
|
import pandas as pd |
|
|
|
|
|
plt.rcParams['figure.dpi'] = 300 |
|
plt.rcParams['savefig.dpi'] = 300 |
|
|
|
def process_and_show_completion(video_input_path, anomaly_threshold_input, fps, progress=gr.Progress()): |
|
try: |
|
print("Starting video processing...") |
|
results = process_video(video_input_path, anomaly_threshold_input, fps, progress=progress) |
|
print("Video processing completed.") |
|
|
|
if isinstance(results[0], str) and results[0].startswith("Error"): |
|
print(f"Error occurred: {results[0]}") |
|
return [results[0]] + [None] * 27 |
|
|
|
exec_time, results_summary, df, mse_embeddings, mse_posture, mse_voice, \ |
|
mse_plot_embeddings, mse_plot_posture, mse_plot_voice, \ |
|
mse_histogram_embeddings, mse_histogram_posture, mse_histogram_voice, \ |
|
mse_heatmap_embeddings, mse_heatmap_posture, mse_heatmap_voice, \ |
|
face_samples_frequent, \ |
|
anomaly_faces_embeddings, anomaly_frames_posture_images, \ |
|
aligned_faces_folder, frames_folder, \ |
|
heatmap_video_path, combined_mse_plot, correlation_heatmap = results |
|
|
|
anomaly_faces_embeddings_pil = [Image.fromarray(face) for face in anomaly_faces_embeddings] if anomaly_faces_embeddings is not None else [] |
|
anomaly_frames_posture_pil = [Image.fromarray(frame) for frame in anomaly_frames_posture_images] if anomaly_frames_posture_images is not None else [] |
|
|
|
face_samples_frequent = [Image.open(path) for path in face_samples_frequent] if face_samples_frequent is not None else [] |
|
|
|
output = [ |
|
exec_time, results_summary, |
|
mse_plot_embeddings, mse_plot_posture, mse_plot_voice, |
|
mse_histogram_embeddings, mse_histogram_posture, mse_histogram_voice, |
|
mse_heatmap_embeddings, mse_heatmap_posture, mse_heatmap_voice, |
|
anomaly_faces_embeddings_pil, anomaly_frames_posture_pil, |
|
face_samples_frequent, |
|
heatmap_video_path, combined_mse_plot, correlation_heatmap |
|
] |
|
|
|
return output |
|
|
|
except Exception as e: |
|
error_message = f"An error occurred: {str(e)}" |
|
print(error_message) |
|
import traceback |
|
traceback.print_exc() |
|
return [error_message] + [None] * 16 |
|
|
|
def on_button_click(video, threshold, fps): |
|
results = process_and_show_completion(video, threshold, fps) |
|
|
|
return { |
|
execution_time: gr.update(visible=True, value=results[0]), |
|
results_tab: gr.update(visible=True), |
|
description_tab: gr.update(visible=False), |
|
results_text: results[1], |
|
mse_features_plot: results[2], |
|
mse_posture_plot: results[3], |
|
mse_voice_plot: results[4], |
|
mse_features_hist: results[5], |
|
mse_posture_hist: results[6], |
|
mse_voice_hist: results[7], |
|
mse_features_heatmap: results[8], |
|
mse_posture_heatmap: results[9], |
|
mse_voice_heatmap: results[10], |
|
anomaly_frames_features: results[11], |
|
anomaly_frames_posture: results[12], |
|
face_samples_most_frequent: results[13], |
|
heatmap_video: results[14], |
|
combined_mse_plot: results[15], |
|
correlation_heatmap_plot: results[16] |
|
} |
|
|
|
with gr.Blocks() as iface: |
|
gr.Markdown(""" |
|
# Multimodal Behavioral Anomalies Detection |
|
|
|
This tool detects anomalies in facial expressions, body language, and voice over the timeline of a video. |
|
It extracts faces, postures, and voice from video frames, and analyzes them to identify anomalies using time series analysis and a variational autoencoder (VAE) approach. |
|
""") |
|
|
|
with gr.Row(): |
|
video_input = gr.Video() |
|
|
|
anomaly_threshold = gr.Slider(minimum=1, maximum=5, step=0.1, value=3, label="Anomaly Detection Threshold (Standard deviation)") |
|
fps_slider = gr.Slider(minimum=5, maximum=20, step=1, value=10, label="Frames Per Second (FPS)") |
|
process_btn = gr.Button("Detect Anomalies") |
|
progress_bar = gr.Progress() |
|
|
|
execution_time = gr.Number(label="Execution Time (seconds)", visible=False) |
|
|
|
with gr.Tabs() as tabs: |
|
with gr.TabItem("Description", id="description_tab") as description_tab: |
|
with gr.Column(): |
|
gr.Markdown(""" |
|
# Multimodal Behavioral Anomalies Detection |
|
|
|
The purpose of this tool is to detect anomalies in facial expressions, body language, and voice over the timeline of a video. |
|
|
|
It extracts faces, postures, and voice features from video frames, detects unique facial features, body postures, and speaker embeddings, and analyzes them to identify anomalies using time series analysis, specifically utilizing a variational autoencoder (VAE) approach. |
|
|
|
## Applications |
|
|
|
- Identify suspicious behavior in surveillance footage. |
|
- Analyze micro-expressions. |
|
- Monitor and assess emotional states in communications. |
|
- Evaluate changes in vocal tone and speech patterns. |
|
|
|
## Features |
|
|
|
- **Face Extraction**: Extracts faces from video frames using the MTCNN model. |
|
- **Feature Embeddings**: Extracts facial feature embeddings using the InceptionResnetV1 model. |
|
- **Body Posture Analysis**: Evaluates body postures using MediaPipe Pose. |
|
- **Voice Analysis**: Extracts and segment speaker embeddings from audio using PyAnnote. |
|
- **Anomaly Detection**: Uses Variational Autoencoder (VAE) to detect anomalies in facial expressions, body postures, and voice features over time. |
|
- **Visualization**: Represents changes in facial expressions, body postures, and vocal tone over time, marking anomaly key points. |
|
|
|
## Limitations |
|
|
|
- **Evaluation Challenges**: Since this is an unsupervised method, there is no labeled data to compare against. |
|
- **Subjectivity**: The concept of what constitutes an "anomaly" can be subjective and context-dependent. |
|
- **Lighting and Resolution**: Variability in lighting conditions and camera resolution can affect the quality of detected features. |
|
- **Audio Quality**: Background noise and poor audio quality can affect the accuracy of voice analysis. |
|
- **Generalization**: The model may not generalize well to all types of videos and contexts. |
|
- **Computationally Intensive**: Processing high-resolution video frames can be computationally demanding. |
|
|
|
## Conclusion |
|
This tool offers solutions for detecting behavioral anomalies in video content. However, users should be aware of its limitations and interpret results with caution. |
|
""") |
|
|
|
with gr.TabItem("Results", id="results_tab", visible=False) as results_tab: |
|
with gr.Tabs(): |
|
with gr.TabItem("Facial Features"): |
|
results_text = gr.TextArea(label="Faces Breakdown", lines=5) |
|
mse_features_plot = gr.Plot(label="MSE: Facial Features") |
|
mse_features_hist = gr.Plot(label="MSE Distribution: Facial Features") |
|
mse_features_heatmap = gr.Plot(label="MSE Heatmap: Facial Features") |
|
anomaly_frames_features = gr.Gallery(label="Anomaly Frames (Facial Features)", columns=6, rows=2, height="auto") |
|
face_samples_most_frequent = gr.Gallery(label="Most Frequent Person Samples", columns=10, rows=2, height="auto") |
|
|
|
with gr.TabItem("Body Posture"): |
|
mse_posture_plot = gr.Plot(label="MSE: Body Posture") |
|
mse_posture_hist = gr.Plot(label="MSE Distribution: Body Posture") |
|
mse_posture_heatmap = gr.Plot(label="MSE Heatmap: Body Posture") |
|
anomaly_frames_posture = gr.Gallery(label="Anomaly Frames (Body Posture)", columns=6, rows=2, height="auto") |
|
|
|
with gr.TabItem("Voice"): |
|
mse_voice_plot = gr.Plot(label="MSE: Voice") |
|
mse_voice_hist = gr.Plot(label="MSE Distribution: Voice") |
|
mse_voice_heatmap = gr.Plot(label="MSE Heatmap: Voice") |
|
|
|
with gr.TabItem("Combined"): |
|
heatmap_video = gr.Video(label="Video with Anomaly Heatmap") |
|
combined_mse_plot = gr.Plot(label="Combined MSE Plot") |
|
correlation_heatmap_plot = gr.Plot(label="Correlation Heatmap") |
|
|
|
process_btn.click( |
|
fn=on_button_click, |
|
inputs=[video_input, anomaly_threshold, fps_slider], |
|
outputs=[ |
|
execution_time, results_tab, description_tab, |
|
results_text, mse_features_plot, mse_posture_plot, mse_voice_plot, |
|
mse_features_hist, mse_posture_hist, mse_voice_hist, |
|
mse_features_heatmap, mse_posture_heatmap, mse_voice_heatmap, |
|
anomaly_frames_features, anomaly_frames_posture, |
|
face_samples_most_frequent, heatmap_video, combined_mse_plot, |
|
correlation_heatmap_plot |
|
] |
|
) |
|
|
|
if __name__ == "__main__": |
|
iface.launch() |