reab5555's picture
Update visualization.py
c0303cf verified
raw
history blame
11.9 kB
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas
import matplotlib.colors as mcolors
from matplotlib.colors import LinearSegmentedColormap
import seaborn as sns
import numpy as np
import pandas as pd
import cv2
from moviepy.editor import VideoFileClip, AudioFileClip, CompositeVideoClip, ImageClip, VideoClip, concatenate_videoclips
from moviepy.video.fx.all import resize
from moviepy.video.io.bindings import mplfig_to_npimage
from PIL import Image, ImageDraw, ImageFont
from matplotlib.patches import Rectangle
from utils import seconds_to_timecode
from anomaly_detection import determine_anomalies
from scipy import interpolate
import gradio as gr
import os
def plot_mse(df, mse_values, title, color='navy', time_threshold=3, anomaly_threshold=4):
plt.figure(figsize=(16, 8), dpi=300)
fig, ax = plt.subplots(figsize=(16, 8))
if 'Seconds' not in df.columns:
df['Seconds'] = df['Timecode'].apply(
lambda x: sum(float(t) * 60 ** i for i, t in enumerate(reversed(x.split(':')))))
# Ensure df and mse_values have the same length and remove NaN values
min_length = min(len(df), len(mse_values))
df = df.iloc[:min_length].copy()
mse_values = mse_values[:min_length]
# Remove NaN values and create a mask for valid data
valid_mask = ~np.isnan(mse_values)
df = df[valid_mask]
mse_values = mse_values[valid_mask]
# Function to identify continuous segments
def get_continuous_segments(seconds, values, max_gap=1):
segments = []
current_segment = []
for i, (sec, val) in enumerate(zip(seconds, values)):
if not current_segment or (sec - current_segment[-1][0] <= max_gap):
current_segment.append((sec, val))
else:
segments.append(current_segment)
current_segment = [(sec, val)]
if current_segment:
segments.append(current_segment)
return segments
# Get continuous segments
segments = get_continuous_segments(df['Seconds'], mse_values)
# Plot each segment separately
for segment in segments:
segment_seconds, segment_mse = zip(*segment)
ax.scatter(segment_seconds, segment_mse, color=color, alpha=0.3, s=5)
# Calculate and plot rolling mean and std for this segment
if len(segment) > 1: # Only if there's more than one point in the segment
segment_df = pd.DataFrame({'Seconds': segment_seconds, 'MSE': segment_mse})
segment_df = segment_df.sort_values('Seconds')
mean = segment_df['MSE'].rolling(window=min(10, len(segment)), min_periods=1, center=True).mean()
std = segment_df['MSE'].rolling(window=min(10, len(segment)), min_periods=1, center=True).std()
ax.plot(segment_df['Seconds'], mean, color=color, linewidth=0.5)
ax.fill_between(segment_df['Seconds'], mean - std, mean + std, color=color, alpha=0.1)
# Rest of the function remains the same
median = np.median(mse_values)
ax.axhline(y=median, color='black', linestyle='--', label='Median Baseline')
threshold = np.mean(mse_values) + anomaly_threshold * np.std(mse_values)
ax.axhline(y=threshold, color='red', linestyle='--', label=f'Anomaly Threshold')
ax.text(ax.get_xlim()[1], threshold, f'Anomaly Threshold', verticalalignment='center', horizontalalignment='left', color='red')
anomalies = determine_anomalies(mse_values, anomaly_threshold)
anomaly_frames = df['Frame'].iloc[anomalies].tolist()
ax.scatter(df['Seconds'].iloc[anomalies], mse_values[anomalies], color='red', s=20, zorder=5)
anomaly_data = list(zip(df['Timecode'].iloc[anomalies],
df['Seconds'].iloc[anomalies],
mse_values[anomalies]))
anomaly_data.sort(key=lambda x: x[1])
grouped_anomalies = []
current_group = []
for timecode, sec, mse in anomaly_data:
if not current_group or sec - current_group[-1][1] <= time_threshold:
current_group.append((timecode, sec, mse))
else:
grouped_anomalies.append(current_group)
current_group = [(timecode, sec, mse)]
if current_group:
grouped_anomalies.append(current_group)
for group in grouped_anomalies:
start_sec = group[0][1]
end_sec = group[-1][1]
rect = Rectangle((start_sec, ax.get_ylim()[0]), end_sec - start_sec, ax.get_ylim()[1] - ax.get_ylim()[0],
facecolor='red', alpha=0.2, zorder=1)
ax.add_patch(rect)
for group in grouped_anomalies:
highest_mse_anomaly = max(group, key=lambda x: x[2])
timecode, sec, mse = highest_mse_anomaly
ax.annotate(timecode, (sec, mse), textcoords="offset points", xytext=(0, 10),
ha='center', fontsize=6, color='red')
max_seconds = df['Seconds'].max()
num_ticks = 100
tick_locations = np.linspace(0, max_seconds, num_ticks)
tick_labels = [seconds_to_timecode(int(s)) for s in tick_locations]
ax.set_xticks(tick_locations)
ax.set_xticklabels(tick_labels, rotation=90, ha='center', fontsize=6)
ax.set_xlabel('Timecode')
ax.set_ylabel('Mean Squared Error')
ax.set_title(title)
ax.grid(True, linestyle='--', alpha=0.7)
ax.legend()
plt.tight_layout()
plt.close()
return fig, anomaly_frames
def plot_mse_histogram(mse_values, title, anomaly_threshold, color='blue'):
plt.figure(figsize=(16, 3), dpi=300)
fig, ax = plt.subplots(figsize=(16, 3))
ax.hist(mse_values, bins=100, edgecolor='black', color=color, alpha=0.7)
ax.set_xlabel('Mean Squared Error')
ax.set_ylabel('Number of Frames')
ax.set_title(title)
mean = np.mean(mse_values)
std = np.std(mse_values)
threshold = mean + anomaly_threshold * std
ax.axvline(x=threshold, color='red', linestyle='--', linewidth=2)
plt.tight_layout()
plt.close()
return fig
def plot_mse_heatmap(mse_values, title, df):
plt.figure(figsize=(20, 3), dpi=300)
fig, ax = plt.subplots(figsize=(20, 3))
# Reshape MSE values to 2D array for heatmap
mse_2d = mse_values.reshape(1, -1)
# Create heatmap
sns.heatmap(mse_2d, cmap='YlOrRd', cbar=False, ax=ax)
# Set x-axis ticks to timecodes
num_ticks = min(60, len(mse_values))
tick_locations = np.linspace(0, len(mse_values) - 1, num_ticks).astype(int)
# Ensure tick_locations are within bounds
tick_locations = tick_locations[tick_locations < len(df)]
tick_labels = [df['Timecode'].iloc[i] if i < len(df) else '' for i in tick_locations]
ax.set_xticks(tick_locations)
ax.set_xticklabels(tick_labels, rotation=90, ha='center', va='top')
ax.set_title(title)
# Remove y-axis labels
ax.set_yticks([])
plt.tight_layout()
plt.close()
return fig
def plot_posture(df, posture_scores, color='blue', anomaly_threshold=3):
plt.figure(figsize=(16, 8), dpi=300)
fig, ax = plt.subplots(figsize=(16, 8))
df['Seconds'] = df['Timecode'].apply(
lambda x: sum(float(t) * 60 ** i for i, t in enumerate(reversed(x.split(':')))))
posture_data = [(frame, score) for frame, score in posture_scores.items() if score is not None]
posture_frames, posture_scores = zip(*posture_data)
# Create a new dataframe for posture data
posture_df = pd.DataFrame({'Frame': posture_frames, 'Score': posture_scores})
posture_df = posture_df.merge(df[['Frame', 'Seconds']], on='Frame', how='inner')
ax.scatter(posture_df['Seconds'], posture_df['Score'], color=color, alpha=0.3, s=5)
mean = posture_df['Score'].rolling(window=10).mean()
ax.plot(posture_df['Seconds'], mean, color=color, linewidth=0.5)
ax.set_xlabel('Timecode')
ax.set_ylabel('Posture Score')
ax.set_title("Body Posture Over Time")
ax.grid(True, linestyle='--', alpha=0.7)
max_seconds = df['Seconds'].max()
num_ticks = 80
tick_locations = np.linspace(0, max_seconds, num_ticks)
tick_labels = [seconds_to_timecode(int(s)) for s in tick_locations]
ax.set_xticks(tick_locations)
ax.set_xticklabels(tick_labels, rotation=90, ha='center', fontsize=6)
plt.tight_layout()
plt.close()
return fig
# Function to create the correlation heatmap
def plot_correlation_heatmap(mse_embeddings, mse_posture, mse_voice):
data = np.vstack((mse_embeddings, mse_posture, mse_voice)).T
df = pd.DataFrame(data, columns=["Facial Features", "Body Posture", "Voice"])
corr = df.corr()
plt.figure(figsize=(10, 8), dpi=300)
heatmap = sns.heatmap(corr, annot=True, cmap='coolwarm', vmin=-1, vmax=1)
plt.title('Correlation Heatmap of MSEs')
plt.tight_layout()
return plt.gcf()
def plot_stacked_mse_heatmaps(mse_face, mse_posture, mse_voice, df, title="Combined MSE Heatmaps"):
plt.figure(figsize=(20, 6), dpi=300)
fig, (ax1, ax2, ax3) = plt.subplots(3, 1, figsize=(20, 6), sharex=True, gridspec_kw={'height_ratios': [1, 1, 1.2], 'hspace': 0})
# Face heatmap
sns.heatmap(mse_face.reshape(1, -1), cmap='Reds', cbar=False, ax=ax1, xticklabels=False, yticklabels=False)
ax1.set_ylabel('Face', rotation=0, ha='right', va='center')
ax1.yaxis.set_label_coords(-0.01, 0.5)
# Posture heatmap
sns.heatmap(mse_posture.reshape(1, -1), cmap='Reds', cbar=False, ax=ax2, xticklabels=False, yticklabels=False)
ax2.set_ylabel('Posture', rotation=0, ha='right', va='center')
ax2.yaxis.set_label_coords(-0.01, 0.5)
# Voice heatmap
sns.heatmap(mse_voice.reshape(1, -1), cmap='Reds', cbar=False, ax=ax3, yticklabels=False)
ax3.set_ylabel('Voice', rotation=0, ha='right', va='center')
ax3.yaxis.set_label_coords(-0.01, 0.5)
# Set x-axis ticks to timecodes for the bottom subplot
num_ticks = min(60, len(mse_voice))
tick_locations = np.linspace(0, len(mse_voice) - 1, num_ticks).astype(int)
tick_labels = [df['Timecode'].iloc[i] if i < len(df) else '' for i in tick_locations]
ax3.set_xticks(tick_locations)
ax3.set_xticklabels(tick_labels, rotation=90, ha='center', va='top')
# Remove spines
for ax in [ax1, ax2, ax3]:
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
ax.spines['bottom'].set_visible(False)
ax.spines['left'].set_visible(False)
plt.suptitle(title)
plt.tight_layout()
plt.close()
return fig
def create_video_with_heatmap(video_path, mse_face, mse_posture, mse_voice, df, output_path):
# Load the original video
video = VideoFileClip(video_path)
# Create the stacked heatmap
fig = plot_stacked_mse_heatmaps(mse_face, mse_posture, mse_voice, df)
heatmap_img = mplfig_to_npimage(fig)
# Resize heatmap to match video width
heatmap_height = int(video.h * 0.2) # 20% of video height
heatmap_resized = cv2.resize(heatmap_img, (video.w, heatmap_height))
def make_frame(t):
# Get the current frame from the original video
frame = video.get_frame(t)
# Calculate the position of the vertical line
line_pos = int(t / video.duration * video.w)
# Add the vertical line to the heatmap
heatmap_with_line = heatmap_resized.copy()
cv2.line(heatmap_with_line, (line_pos, 0), (line_pos, heatmap_height), (0, 0, 0), 2)
# Combine the original frame with the heatmap
combined_frame = np.vstack((frame, heatmap_with_line))
return combined_frame
# Create a new video clip with the combined frames
final_clip = VideoClip(make_frame, duration=video.duration)
# Write the final video
final_clip.write_videofile(output_path, codec='libx264', fps=video.fps)
# Close the clips
video.close()
final_clip.close()
return output_path