reab5555's picture
Update app.py
aeb4947 verified
raw
history blame
5.99 kB
import gradio as gr
import time
from video_processing import process_video
from PIL import Image
import matplotlib
matplotlib.rcParams['figure.dpi'] = 300
matplotlib.rcParams['savefig.dpi'] = 300
def process_and_show_completion(video_input_path, anomaly_threshold_input, fps, progress=gr.Progress()):
try:
print("Starting video processing...")
results = process_video(video_input_path, anomaly_threshold_input, fps, progress=progress)
print("Video processing completed.")
if isinstance(results[0], str) and results[0].startswith("Error"):
print(f"Error occurred: {results[0]}")
return [results[0]] + [None] * 23 # Increased number of None values
exec_time, results_summary, df, mse_embeddings, mse_posture, mse_voice, \
mse_plot_embeddings, mse_histogram_embeddings, \
mse_plot_posture, mse_histogram_posture, \
mse_plot_voice, mse_histogram_voice, \
mse_heatmap_embeddings, mse_heatmap_posture, mse_heatmap_voice, \
face_samples_frequent, \
anomaly_faces_embeddings, anomaly_frames_posture_images, \
aligned_faces_folder, frames_folder, \
heatmap_video_path = results
anomaly_faces_embeddings_pil = [Image.fromarray(face) for face in anomaly_faces_embeddings] if anomaly_faces_embeddings is not None else []
anomaly_frames_posture_pil = [Image.fromarray(frame) for frame in anomaly_frames_posture_images] if anomaly_frames_posture_images is not None else []
face_samples_frequent = [Image.open(path) for path in face_samples_frequent] if face_samples_frequent is not None else []
output = [
exec_time, results_summary,
df, mse_embeddings, mse_posture, mse_voice,
mse_plot_embeddings, mse_plot_posture, mse_plot_voice,
mse_histogram_embeddings, mse_histogram_posture, mse_histogram_voice,
mse_heatmap_embeddings, mse_heatmap_posture, mse_heatmap_voice,
anomaly_faces_embeddings_pil, anomaly_frames_posture_pil,
face_samples_frequent,
aligned_faces_folder, frames_folder,
mse_embeddings, mse_posture, mse_voice,
heatmap_video_path
]
return output
except Exception as e:
error_message = f"An error occurred: {str(e)}"
print(error_message)
import traceback
traceback.print_exc()
return [error_message] + [None] * 23 # Increased number of None values
with gr.Blocks() as iface:
gr.Markdown("""
# Multimodal Behavioral Anomalies Detection
This tool detects anomalies in facial expressions, body language, and voice over the timeline of a video.
It extracts faces, postures, and voice from video frames, and analyzes them to identify anomalies using time series analysis and a variational autoencoder (VAE) approach.
""")
with gr.Row():
video_input = gr.Video()
anomaly_threshold = gr.Slider(minimum=1, maximum=5, step=0.1, value=3, label="Anomaly Detection Threshold (Standard deviation)")
fps_slider = gr.Slider(minimum=5, maximum=20, step=1, value=10, label="Frames Per Second (FPS)")
process_btn = gr.Button("Detect Anomalies")
progress_bar = gr.Progress()
execution_time = gr.Number(label="Execution Time (seconds)")
with gr.Group(visible=False) as results_group:
results_text = gr.TextArea(label="Anomaly Detection Results", lines=4)
with gr.Tab("Facial Features"):
mse_features_plot = gr.Plot(label="MSE: Facial Features")
mse_features_hist = gr.Plot(label="MSE Distribution: Facial Features")
mse_features_heatmap = gr.Plot(label="MSE Heatmap: Facial Features")
anomaly_frames_features = gr.Gallery(label="Anomaly Frames (Facial Features)", columns=6, rows=2, height="auto")
face_samples_most_frequent = gr.Gallery(label="Most Frequent Person Samples", columns=10, rows=2, height="auto")
with gr.Tab("Body Posture"):
mse_posture_plot = gr.Plot(label="MSE: Body Posture")
mse_posture_hist = gr.Plot(label="MSE Distribution: Body Posture")
mse_posture_heatmap = gr.Plot(label="MSE Heatmap: Body Posture")
anomaly_frames_posture = gr.Gallery(label="Anomaly Frames (Body Posture)", columns=6, rows=2, height="auto")
with gr.Tab("Voice"):
mse_voice_plot = gr.Plot(label="MSE: Voice")
mse_voice_hist = gr.Plot(label="MSE Distribution: Voice")
mse_voice_heatmap = gr.Plot(label="MSE Heatmap: Voice")
with gr.Tab("Video with Heatmap"):
heatmap_video = gr.Video(label="Video with Anomaly Heatmap")
df_store = gr.State()
mse_features_store = gr.State()
mse_posture_store = gr.State()
mse_voice_store = gr.State()
aligned_faces_folder_store = gr.State()
frames_folder_store = gr.State()
mse_heatmap_embeddings_store = gr.State()
mse_heatmap_posture_store = gr.State()
mse_heatmap_voice_store = gr.State()
process_btn.click(
process_and_show_completion,
inputs=[video_input, anomaly_threshold, fps_slider],
outputs=[
execution_time, results_text, df_store,
mse_features_store, mse_posture_store, mse_voice_store,
mse_features_plot, mse_posture_plot, mse_voice_plot,
mse_features_hist, mse_posture_hist, mse_voice_hist,
mse_features_heatmap, mse_posture_heatmap, mse_voice_heatmap,
anomaly_frames_features, anomaly_frames_posture,
face_samples_most_frequent,
aligned_faces_folder_store, frames_folder_store,
mse_heatmap_embeddings_store, mse_heatmap_posture_store, mse_heatmap_voice_store,
heatmap_video
]
).then(
lambda: gr.Group(visible=True),
inputs=None,
outputs=[results_group]
)
if __name__ == "__main__":
iface.launch()