|
import os |
|
import cv2 |
|
import numpy as np |
|
from moviepy.editor import VideoFileClip |
|
import tempfile |
|
import time |
|
from PIL import Image, ImageDraw, ImageFont |
|
import math |
|
from face_analysis import get_face_embedding, cluster_faces, organize_faces_by_person |
|
from pose_analysis import calculate_posture_score, draw_pose_landmarks |
|
from anomaly_detection import anomaly_detection |
|
from visualization import plot_mse, plot_mse_histogram, plot_mse_heatmap |
|
from utils import frame_to_timecode |
|
import pandas as pd |
|
from facenet_pytorch import MTCNN |
|
import torch |
|
import mediapipe as mp |
|
|
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
mtcnn = MTCNN(keep_all=False, device=device, thresholds=[0.9, 0.9, 0.9], min_face_size=50) |
|
|
|
mp_face_mesh = mp.solutions.face_mesh |
|
face_mesh = mp_face_mesh.FaceMesh(static_image_mode=False, max_num_faces=1, min_detection_confidence=0.5) |
|
|
|
mp_pose = mp.solutions.pose |
|
pose = mp_pose.Pose(static_image_mode=False, min_detection_confidence=0.6, min_tracking_confidence=0.6) |
|
|
|
def extract_frames(video_path, output_folder, desired_fps, progress_callback=None): |
|
os.makedirs(output_folder, exist_ok=True) |
|
clip = VideoFileClip(video_path) |
|
original_fps = clip.fps |
|
duration = clip.duration |
|
total_frames = int(duration * original_fps) |
|
step = max(1, original_fps / desired_fps) |
|
total_frames_to_extract = int(total_frames / step) |
|
|
|
frame_count = 0 |
|
for t in np.arange(0, duration, step / original_fps): |
|
frame = clip.get_frame(t) |
|
cv2.imwrite(os.path.join(output_folder, f"frame_{frame_count:04d}.jpg"), cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)) |
|
frame_count += 1 |
|
if progress_callback: |
|
progress = min(100, (frame_count / total_frames_to_extract) * 100) |
|
progress_callback(progress, f"Extracting frame") |
|
if frame_count >= total_frames_to_extract: |
|
break |
|
clip.close() |
|
return frame_count, original_fps |
|
|
|
def process_frames(frames_folder, aligned_faces_folder, frame_count, progress): |
|
embeddings_by_frame = {} |
|
posture_scores_by_frame = {} |
|
posture_landmarks_by_frame = {} |
|
aligned_face_paths = [] |
|
frame_files = sorted([f for f in os.listdir(frames_folder) if f.endswith('.jpg')]) |
|
|
|
for i, frame_file in enumerate(frame_files): |
|
frame_num = int(frame_file.split('_')[1].split('.')[0]) |
|
frame_path = os.path.join(frames_folder, frame_file) |
|
frame = cv2.imread(frame_path) |
|
|
|
if frame is not None: |
|
posture_score, posture_landmarks = calculate_posture_score(frame) |
|
posture_scores_by_frame[frame_num] = posture_score |
|
posture_landmarks_by_frame[frame_num] = posture_landmarks |
|
|
|
boxes, probs = mtcnn.detect(frame) |
|
|
|
if boxes is not None and len(boxes) > 0 and probs[0] >= 0.99: |
|
x1, y1, x2, y2 = [int(b) for b in boxes[0]] |
|
face = frame[y1:y2, x1:x2] |
|
if face.size > 0: |
|
results = face_mesh.process(cv2.cvtColor(face, cv2.COLOR_BGR2RGB)) |
|
if results.multi_face_landmarks and is_frontal_face(results.multi_face_landmarks[0].landmark): |
|
aligned_face = face |
|
|
|
if aligned_face is not None: |
|
aligned_face_resized = cv2.resize(aligned_face, (160, 160)) |
|
output_path = os.path.join(aligned_faces_folder, f"frame_{frame_num}_face.jpg") |
|
cv2.imwrite(output_path, aligned_face_resized) |
|
aligned_face_paths.append(output_path) |
|
embedding = get_face_embedding(aligned_face_resized) |
|
embeddings_by_frame[frame_num] = embedding |
|
|
|
progress((i + 1) / len(frame_files), f"Processing frame {i + 1} of {len(frame_files)}") |
|
|
|
return embeddings_by_frame, posture_scores_by_frame, posture_landmarks_by_frame, aligned_face_paths |
|
|
|
def process_video(video_path, anomaly_threshold, desired_fps, progress=None): |
|
start_time = time.time() |
|
output_folder = "output" |
|
os.makedirs(output_folder, exist_ok=True) |
|
|
|
GRAPH_COLORS = { |
|
'facial_embeddings': 'navy', |
|
'body_posture': 'purple' |
|
} |
|
|
|
with tempfile.TemporaryDirectory() as temp_dir: |
|
aligned_faces_folder = os.path.join(temp_dir, 'aligned_faces') |
|
organized_faces_folder = os.path.join(temp_dir, 'organized_faces') |
|
os.makedirs(aligned_faces_folder, exist_ok=True) |
|
os.makedirs(organized_faces_folder, exist_ok=True) |
|
|
|
clip = VideoFileClip(video_path) |
|
video_duration = clip.duration |
|
clip.close() |
|
|
|
progress(0, "Starting frame extraction") |
|
frames_folder = os.path.join(temp_dir, 'extracted_frames') |
|
|
|
def extraction_progress(percent, message): |
|
progress(percent / 100, f"Extracting frames") |
|
|
|
frame_count, original_fps = extract_frames(video_path, frames_folder, desired_fps, extraction_progress) |
|
|
|
progress(1, "Frame extraction complete") |
|
progress(0.3, "Processing frames") |
|
embeddings_by_frame, posture_scores_by_frame, posture_landmarks_by_frame, aligned_face_paths = process_frames( |
|
frames_folder, aligned_faces_folder, |
|
frame_count, |
|
progress) |
|
|
|
if not aligned_face_paths: |
|
raise ValueError("No faces were extracted from the video.") |
|
|
|
progress(0.6, "Clustering faces") |
|
embeddings = [embedding for _, embedding in embeddings_by_frame.items()] |
|
clusters = cluster_faces(embeddings) |
|
num_clusters = len(set(clusters)) |
|
|
|
progress(0.7, "Organizing faces") |
|
organize_faces_by_person(embeddings_by_frame, clusters, aligned_faces_folder, organized_faces_folder) |
|
|
|
progress(0.8, "Saving person data") |
|
df, largest_cluster = save_person_data_to_csv(embeddings_by_frame, clusters, desired_fps, |
|
original_fps, temp_dir, video_duration) |
|
|
|
df['Seconds'] = df['Timecode'].apply( |
|
lambda x: sum(float(t) * 60 ** i for i, t in enumerate(reversed(x.split(':'))))) |
|
|
|
progress(0.85, "Getting face samples") |
|
face_samples = get_all_face_samples(organized_faces_folder, output_folder, largest_cluster) |
|
|
|
progress(0.9, "Performing anomaly detection") |
|
embedding_columns = [col for col in df.columns if col.startswith('Raw_Embedding_')] |
|
|
|
X_embeddings = df[embedding_columns].values |
|
|
|
try: |
|
X_posture = np.array([posture_scores_by_frame.get(frame, None) for frame in df['Frame']]) |
|
X_posture = X_posture[X_posture != None].reshape(-1, 1) |
|
|
|
if len(X_posture) == 0: |
|
raise ValueError("No valid posture data found") |
|
|
|
mse_embeddings, mse_posture = anomaly_detection(X_embeddings, X_posture) |
|
|
|
progress(0.95, "Generating plots") |
|
mse_plot_embeddings, anomaly_frames_embeddings = plot_mse(df, mse_embeddings, "Facial Features", |
|
color=GRAPH_COLORS['facial_embeddings'], |
|
anomaly_threshold=anomaly_threshold) |
|
|
|
mse_histogram_embeddings = plot_mse_histogram(mse_embeddings, "MSE Distribution: Facial Features", |
|
anomaly_threshold, color=GRAPH_COLORS['facial_embeddings']) |
|
|
|
mse_plot_posture, anomaly_frames_posture = plot_mse(df, mse_posture, "Body Posture", |
|
color=GRAPH_COLORS['body_posture'], |
|
anomaly_threshold=anomaly_threshold) |
|
|
|
mse_histogram_posture = plot_mse_histogram(mse_posture, "MSE Distribution: Body Posture", |
|
anomaly_threshold, color=GRAPH_COLORS['body_posture']) |
|
|
|
mse_heatmap_posture = plot_mse_heatmap(mse_posture, "Body Posture MSE Heatmap", df) |
|
|
|
mse_heatmap_embeddings = plot_mse_heatmap(mse_embeddings, "Facial Features MSE Heatmap", df) |
|
|
|
except Exception as e: |
|
print(f"Error details: {str(e)}") |
|
import traceback |
|
traceback.print_exc() |
|
return (f"Error in video processing: {str(e)}",) + (None,) * 14 |
|
|
|
progress(1.0, "Preparing results") |
|
results = f"Number of persons detected: {num_clusters}\n\n" |
|
results += "Breakdown:\n" |
|
for cluster_id in range(num_clusters): |
|
face_count = len([c for c in clusters if c == cluster_id]) |
|
results += f"Person {cluster_id + 1}: {face_count} face frames\n" |
|
|
|
end_time = time.time() |
|
execution_time = end_time - start_time |
|
|
|
def add_timecode_to_image(image, timecode): |
|
img_pil = Image.fromarray(image) |
|
draw = ImageDraw.Draw(img_pil) |
|
font = ImageFont.load_default() |
|
draw.text((10, 10), timecode, (255, 0, 0), font=font) |
|
return np.array(img_pil) |
|
|
|
anomaly_faces_embeddings = [] |
|
for frame in anomaly_frames_embeddings: |
|
face_path = os.path.join(aligned_faces_folder, f"frame_{frame}_face.jpg") |
|
if os.path.exists(face_path): |
|
face_img = cv2.imread(face_path) |
|
if face_img is not None: |
|
face_img = cv2.cvtColor(face_img, cv2.COLOR_BGR2RGB) |
|
timecode = df[df['Frame'] == frame]['Timecode'].iloc[0] |
|
face_img_with_timecode = add_timecode_to_image(face_img, timecode) |
|
anomaly_faces_embeddings.append(face_img_with_timecode) |
|
|
|
anomaly_frames_posture_images = [] |
|
for frame in anomaly_frames_posture: |
|
frame_path = os.path.join(frames_folder, f"frame_{frame:04d}.jpg") |
|
if os.path.exists(frame_path): |
|
frame_img = cv2.imread(frame_path) |
|
if frame_img is not None: |
|
frame_img = cv2.cvtColor(frame_img, cv2.COLOR_BGR2RGB) |
|
pose_results = pose.process(frame_img) |
|
if pose_results.pose_landmarks: |
|
frame_img = draw_pose_landmarks(frame_img, pose_results.pose_landmarks) |
|
timecode = df[df['Frame'] == frame]['Timecode'].iloc[0] |
|
frame_img_with_timecode = add_timecode_to_image(frame_img, timecode) |
|
anomaly_frames_posture_images.append(frame_img_with_timecode) |
|
|
|
return ( |
|
execution_time, |
|
results, |
|
df, |
|
mse_embeddings, |
|
mse_posture, |
|
mse_plot_embeddings, |
|
mse_histogram_embeddings, |
|
mse_plot_posture, |
|
mse_histogram_posture, |
|
mse_heatmap_embeddings, |
|
mse_heatmap_posture, |
|
face_samples["most_frequent"], |
|
face_samples["others"], |
|
anomaly_faces_embeddings, |
|
anomaly_frames_posture_images, |
|
aligned_faces_folder, |
|
frames_folder |
|
) |
|
|
|
def is_frontal_face(landmarks, threshold=50): |
|
nose_tip = landmarks[4] |
|
left_chin = landmarks[234] |
|
right_chin = landmarks[454] |
|
nose_to_left = [left_chin.x - nose_tip.x, left_chin.y - nose_tip.y] |
|
nose_to_right = [right_chin.x - nose_tip.x, right_chin.y - nose_tip.y] |
|
dot_product = nose_to_left[0] * nose_to_right[0] + nose_to_left[1] * nose_to_right[1] |
|
magnitude_left = math.sqrt(nose_to_left[0] ** 2 + nose_to_left[1] ** 2) |
|
magnitude_right = math.sqrt(nose_to_right[0] ** 2 + nose_to_right[1] ** 2) |
|
cos_angle = dot_product / (magnitude_left * magnitude_right) |
|
angle = math.acos(cos_angle) |
|
angle_degrees = math.degrees(angle) |
|
return abs(180 - angle_degrees) < threshold |
|
|
|
def save_person_data_to_csv(embeddings_by_frame, clusters, desired_fps, original_fps, output_folder, video_duration): |
|
person_data = {} |
|
|
|
for (frame_num, embedding), cluster in zip(embeddings_by_frame.items(), clusters): |
|
if cluster not in person_data: |
|
person_data[cluster] = [] |
|
person_data[cluster].append((frame_num, embedding)) |
|
|
|
largest_cluster = max(person_data, key=lambda k: len(person_data[k])) |
|
|
|
data = person_data[largest_cluster] |
|
data.sort(key=lambda x: x[0]) |
|
frames, embeddings = zip(*data) |
|
|
|
embeddings_array = np.array(embeddings) |
|
np.save(os.path.join(output_folder, 'face_embeddings.npy'), embeddings_array) |
|
|
|
total_frames = max(frames) |
|
timecodes = [frame_to_timecode(frame, total_frames, video_duration) for frame in frames] |
|
|
|
df_data = { |
|
'Frame': frames, |
|
'Timecode': timecodes, |
|
'Embedding_Index': range(len(embeddings)) |
|
} |
|
|
|
for i in range(len(embeddings[0])): |
|
df_data[f'Raw_Embedding_{i}'] = [embedding[i] for embedding in embeddings] |
|
|
|
df = pd.DataFrame(df_data) |
|
|
|
return df, largest_cluster |
|
|
|
def get_all_face_samples(organized_faces_folder, output_folder, largest_cluster, max_samples=100): |
|
face_samples = {"most_frequent": [], "others": []} |
|
for cluster_folder in sorted(os.listdir(organized_faces_folder)): |
|
if cluster_folder.startswith("person_"): |
|
person_folder = os.path.join(organized_faces_folder, cluster_folder) |
|
face_files = sorted([f for f in os.listdir(person_folder) if f.endswith('.jpg')]) |
|
if face_files: |
|
cluster_id = int(cluster_folder.split('_')[1]) |
|
if cluster_id == largest_cluster: |
|
for i, sample in enumerate(face_files[:max_samples]): |
|
face_path = os.path.join(person_folder, sample) |
|
output_path = os.path.join(output_folder, f"face_sample_most_frequent_{i:04d}.jpg") |
|
face_img = cv2.imread(face_path) |
|
if face_img is not None: |
|
small_face = cv2.resize(face_img, (160, 160)) |
|
cv2.imwrite(output_path, small_face) |
|
face_samples["most_frequent"].append(output_path) |
|
if len(face_samples["most_frequent"]) >= max_samples: |
|
break |
|
else: |
|
remaining_samples = max_samples - len(face_samples["others"]) |
|
if remaining_samples > 0: |
|
for i, sample in enumerate(face_files[:remaining_samples]): |
|
face_path = os.path.join(person_folder, sample) |
|
output_path = os.path.join(output_folder, f"face_sample_other_{cluster_id:02d}_{i:04d}.jpg") |
|
face_img = cv2.imread(face_path) |
|
if face_img is not None: |
|
small_face = cv2.resize(face_img, (160, 160)) |
|
cv2.imwrite(output_path, small_face) |
|
face_samples["others"].append(output_path) |
|
if len(face_samples["others"]) >= max_samples: |
|
break |
|
return face_samples |