Spaces:
Runtime error
Runtime error
| import os | |
| import cv2 | |
| import numpy as np | |
| import torch | |
| import torch.nn as nn | |
| import torch.optim as optim | |
| import seaborn as sns | |
| from facenet_pytorch import InceptionResnetV1, MTCNN | |
| import mediapipe as mp | |
| from fer import FER | |
| from scipy import interpolate | |
| from sklearn.cluster import DBSCAN, KMeans | |
| from sklearn.preprocessing import StandardScaler, MinMaxScaler | |
| from sklearn.metrics import silhouette_score | |
| import umap | |
| import pandas as pd | |
| import matplotlib | |
| import matplotlib.pyplot as plt | |
| from moviepy.editor import VideoFileClip | |
| from PIL import Image | |
| import gradio as gr | |
| import tempfile | |
| import shutil | |
| import io | |
| # Suppress TensorFlow warnings | |
| os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' | |
| import tensorflow as tf | |
| tf.get_logger().setLevel('ERROR') | |
| matplotlib.rcParams['figure.dpi'] = 400 | |
| matplotlib.rcParams['savefig.dpi'] = 400 | |
| # Initialize models and other global variables | |
| device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
| mtcnn = MTCNN(keep_all=False, device=device, thresholds=[0.98, 0.98, 0.98], min_face_size=50, | |
| selection_method='largest') | |
| model = InceptionResnetV1(pretrained='vggface2').eval().to(device) | |
| mp_face_mesh = mp.solutions.face_mesh | |
| face_mesh = mp_face_mesh.FaceMesh(static_image_mode=False, max_num_faces=1, min_detection_confidence=0.5) | |
| emotion_detector = FER(mtcnn=False) | |
| def frame_to_timecode(frame_num, total_frames, duration): | |
| total_seconds = (frame_num / total_frames) * duration | |
| hours = int(total_seconds // 3600) | |
| minutes = int((total_seconds % 3600) // 60) | |
| seconds = int(total_seconds % 60) | |
| milliseconds = int((total_seconds - int(total_seconds)) * 1000) | |
| return f"{hours:02d}:{minutes:02d}:{seconds:02d}.{milliseconds:03d}" | |
| def get_face_embedding_and_emotion(face_img): | |
| face_tensor = torch.tensor(face_img).permute(2, 0, 1).unsqueeze(0).float() / 255 | |
| face_tensor = (face_tensor - 0.5) / 0.5 | |
| face_tensor = face_tensor.to(device) | |
| with torch.no_grad(): | |
| embedding = model(face_tensor) | |
| emotions = emotion_detector.detect_emotions(face_img) | |
| if emotions: | |
| emotion_dict = emotions[0]['emotions'] | |
| else: | |
| emotion_dict = {e: 0 for e in ['angry', 'disgust', 'fear', 'happy', 'sad', 'surprise', 'neutral']} | |
| return embedding.cpu().numpy().flatten(), emotion_dict | |
| def alignFace(img): | |
| img_raw = img.copy() | |
| results = face_mesh.process(cv2.cvtColor(img, cv2.COLOR_BGR2RGB)) | |
| if not results.multi_face_landmarks: | |
| return None | |
| landmarks = results.multi_face_landmarks[0].landmark | |
| left_eye = np.array([[landmarks[33].x, landmarks[33].y], [landmarks[160].x, landmarks[160].y], | |
| [landmarks[158].x, landmarks[158].y], [landmarks[144].x, landmarks[144].y], | |
| [landmarks[153].x, landmarks[153].y], [landmarks[145].x, landmarks[145].y]]) | |
| right_eye = np.array([[landmarks[362].x, landmarks[362].y], [landmarks[385].x, landmarks[385].y], | |
| [landmarks[387].x, landmarks[387].y], [landmarks[263].x, landmarks[263].y], | |
| [landmarks[373].x, landmarks[373].y], [landmarks[380].x, landmarks[380].y]]) | |
| left_eye_center = left_eye.mean(axis=0).astype(np.int32) | |
| right_eye_center = right_eye.mean(axis=0).astype(np.int32) | |
| dY = right_eye_center[1] - left_eye_center[1] | |
| dX = right_eye_center[0] - left_eye_center[0] | |
| angle = np.degrees(np.arctan2(dY, dX)) | |
| desired_angle = 0 | |
| angle_diff = desired_angle - angle | |
| height, width = img_raw.shape[:2] | |
| center = (width // 2, height // 2) | |
| rotation_matrix = cv2.getRotationMatrix2D(center, angle_diff, 1) | |
| new_img = cv2.warpAffine(img_raw, rotation_matrix, (width, height)) | |
| return new_img | |
| def extract_frames(video_path, output_folder, desired_fps, progress_callback=None): | |
| os.makedirs(output_folder, exist_ok=True) | |
| clip = VideoFileClip(video_path) | |
| original_fps = clip.fps | |
| duration = clip.duration | |
| total_frames = int(duration * original_fps) | |
| step = max(1, original_fps / desired_fps) | |
| total_frames_to_extract = int(total_frames / step) | |
| frame_count = 0 | |
| for t in np.arange(0, duration, step / original_fps): | |
| frame = clip.get_frame(t) | |
| img = Image.fromarray(frame) | |
| img.save(os.path.join(output_folder, f"frame_{frame_count:04d}.jpg")) | |
| frame_count += 1 | |
| if progress_callback: | |
| progress = min(100, (frame_count / total_frames_to_extract) * 100) | |
| progress_callback(progress, f"Extracting frame") | |
| if frame_count >= total_frames_to_extract: | |
| break | |
| clip.close() | |
| return frame_count, original_fps | |
| def process_frames(frames_folder, aligned_faces_folder, frame_count, progress, batch_size): | |
| embeddings_by_frame = {} | |
| emotions_by_frame = {} | |
| aligned_face_paths = [] | |
| frame_files = sorted([f for f in os.listdir(frames_folder) if f.endswith('.jpg')]) | |
| for i in range(0, len(frame_files), batch_size): | |
| batch_files = frame_files[i:i + batch_size] | |
| batch_frames = [] | |
| batch_nums = [] | |
| for frame_file in batch_files: | |
| frame_num = int(frame_file.split('_')[1].split('.')[0]) | |
| frame_path = os.path.join(frames_folder, frame_file) | |
| frame = cv2.imread(frame_path) | |
| if frame is not None: | |
| batch_frames.append(frame) | |
| batch_nums.append(frame_num) | |
| if batch_frames: | |
| batch_boxes, batch_probs = mtcnn.detect(batch_frames) | |
| for j, (frame, frame_num, boxes, probs) in enumerate( | |
| zip(batch_frames, batch_nums, batch_boxes, batch_probs)): | |
| if boxes is not None and len(boxes) > 0 and probs[0] >= 0.99: | |
| x1, y1, x2, y2 = [int(b) for b in boxes[0]] | |
| face = frame[y1:y2, x1:x2] | |
| if face.size > 0: | |
| aligned_face = alignFace(face) | |
| if aligned_face is not None: | |
| aligned_face_resized = cv2.resize(aligned_face, (160, 160)) | |
| output_path = os.path.join(aligned_faces_folder, f"frame_{frame_num}_face.jpg") | |
| cv2.imwrite(output_path, aligned_face_resized) | |
| aligned_face_paths.append(output_path) | |
| embedding, emotion = get_face_embedding_and_emotion(aligned_face_resized) | |
| embeddings_by_frame[frame_num] = embedding | |
| emotions_by_frame[frame_num] = emotion | |
| progress((i + len(batch_files)) / frame_count, | |
| f"Processing frames {i + 1} to {min(i + len(batch_files), frame_count)} of {frame_count}") | |
| return embeddings_by_frame, emotions_by_frame, aligned_face_paths | |
| def cluster_faces(embeddings): | |
| if len(embeddings) < 2: | |
| print("Not enough faces for clustering. Assigning all to one cluster.") | |
| return np.zeros(len(embeddings), dtype=int) | |
| X = np.stack(embeddings) | |
| dbscan = DBSCAN(eps=0.5, min_samples=5, metric='cosine') | |
| clusters = dbscan.fit_predict(X) | |
| if np.all(clusters == -1): | |
| print("DBSCAN assigned all to noise. Considering as one cluster.") | |
| return np.zeros(len(embeddings), dtype=int) | |
| return clusters | |
| def organize_faces_by_person(embeddings_by_frame, clusters, aligned_faces_folder, organized_faces_folder): | |
| for (frame_num, embedding), cluster in zip(embeddings_by_frame.items(), clusters): | |
| person_folder = os.path.join(organized_faces_folder, f"person_{cluster}") | |
| os.makedirs(person_folder, exist_ok=True) | |
| src = os.path.join(aligned_faces_folder, f"frame_{frame_num}_face.jpg") | |
| dst = os.path.join(person_folder, f"frame_{frame_num}_face.jpg") | |
| shutil.copy(src, dst) | |
| def save_person_data_to_csv(embeddings_by_frame, emotions_by_frame, clusters, desired_fps, original_fps, output_folder, | |
| num_components, video_duration): | |
| emotions = ['angry', 'disgust', 'fear', 'happy', 'sad', 'surprise', 'neutral'] | |
| person_data = {} | |
| for (frame_num, embedding), (_, emotion_dict), cluster in zip(embeddings_by_frame.items(), | |
| emotions_by_frame.items(), clusters): | |
| if cluster not in person_data: | |
| person_data[cluster] = [] | |
| person_data[cluster].append((frame_num, embedding, {e: emotion_dict[e] for e in emotions})) | |
| largest_cluster = max(person_data, key=lambda k: len(person_data[k])) | |
| data = person_data[largest_cluster] | |
| data.sort(key=lambda x: x[0]) | |
| frames, embeddings, emotions_data = zip(*data) | |
| embeddings_array = np.array(embeddings) | |
| np.save(os.path.join(output_folder, 'face_embeddings.npy'), embeddings_array) | |
| reducer = umap.UMAP(n_components=num_components, random_state=1) | |
| embeddings_reduced = reducer.fit_transform(embeddings) | |
| scaler = MinMaxScaler(feature_range=(0, 1)) | |
| embeddings_reduced_normalized = scaler.fit_transform(embeddings_reduced) | |
| total_frames = max(frames) | |
| timecodes = [frame_to_timecode(frame, total_frames, video_duration) for frame in frames] | |
| times_in_minutes = [frame / total_frames * video_duration / 60 for frame in frames] | |
| df_data = { | |
| 'Frame': frames, | |
| 'Timecode': timecodes, | |
| 'Time (Minutes)': times_in_minutes, | |
| 'Embedding_Index': range(len(embeddings)) | |
| } | |
| for i in range(num_components): | |
| df_data[f'Comp {i + 1}'] = embeddings_reduced_normalized[:, i] | |
| for emotion in emotions: | |
| df_data[emotion] = [e[emotion] for e in emotions_data] | |
| df = pd.DataFrame(df_data) | |
| return df, largest_cluster | |
| def determine_optimal_anomalies(anomaly_scores, z_threshold=3): | |
| mean = np.mean(anomaly_scores) | |
| std = np.std(anomaly_scores) | |
| threshold = mean + z_threshold * std | |
| anomalies = anomaly_scores > threshold | |
| return anomalies, np.where(anomalies)[0] | |
| def timecode_to_seconds(timecode): | |
| h, m, s = map(float, timecode.split(':')) | |
| return h * 3600 + m * 60 + s | |
| def group_similar_timecodes(timecodes, scores, threshold_seconds=5): | |
| grouped = [] | |
| current_group = [] | |
| for i, (timecode, score) in enumerate(zip(timecodes, scores)): | |
| if not current_group or abs( | |
| timecode_to_seconds(timecode) - timecode_to_seconds(current_group[0][0])) <= threshold_seconds: | |
| current_group.append((timecode, score, i)) | |
| else: | |
| grouped.append(current_group) | |
| current_group = [(timecode, score, i)] | |
| if current_group: | |
| grouped.append(current_group) | |
| return grouped | |
| class LSTMAutoencoder(nn.Module): | |
| def __init__(self, input_size, hidden_size=64, num_layers=2): | |
| super(LSTMAutoencoder, self).__init__() | |
| self.input_size = input_size | |
| self.hidden_size = hidden_size | |
| self.num_layers = num_layers | |
| self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True) | |
| self.fc = nn.Linear(hidden_size, input_size) | |
| def forward(self, x): | |
| outputs, (hidden, _) = self.lstm(x) | |
| out = self.fc(outputs) | |
| return out | |
| def lstm_anomaly_detection(X, feature_columns, epochs=100, batch_size=64): | |
| device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
| X = torch.FloatTensor(X).to(device) | |
| if X.dim() == 2: | |
| X = X.unsqueeze(0) | |
| elif X.dim() == 1: | |
| X = X.unsqueeze(0).unsqueeze(2) | |
| elif X.dim() > 3: | |
| raise ValueError(f"Input X should be 1D, 2D or 3D, but got {X.dim()} dimensions") | |
| print(f"X shape after reshaping: {X.shape}") | |
| train_size = int(0.85 * X.shape[1]) | |
| X_train, X_val = X[:, :train_size, :], X[:, train_size:, :] | |
| model = LSTMAutoencoder(input_size=X.shape[2]).to(device) | |
| criterion = nn.MSELoss() | |
| optimizer = optim.Adam(model.parameters()) | |
| for epoch in range(epochs): | |
| model.train() | |
| optimizer.zero_grad() | |
| output_train = model(X_train) | |
| loss_train = criterion(output_train, X_train.squeeze(0)) | |
| loss_train.backward() | |
| optimizer.step() | |
| model.eval() | |
| with torch.no_grad(): | |
| output_val = model(X_val) | |
| loss_val = criterion(output_val, X_val.squeeze(0)) | |
| model.eval() | |
| with torch.no_grad(): | |
| reconstructed = model(X).squeeze(0).cpu().numpy() | |
| mse_all = np.mean(np.power(X.squeeze(0).cpu().numpy() - reconstructed, 2), axis=1) | |
| anomalies_all, top_indices_all = determine_optimal_anomalies(mse_all) | |
| component_columns = [col for col in feature_columns if col.startswith('Comp')] | |
| component_indices = [feature_columns.index(col) for col in component_columns] | |
| if len(component_indices) > 0: | |
| mse_comp = np.mean( | |
| np.power(X.squeeze(0).cpu().numpy()[:, component_indices] - reconstructed[:, component_indices], 2), axis=1) | |
| else: | |
| mse_comp = mse_all | |
| anomalies_comp, top_indices_comp = determine_optimal_anomalies(mse_comp) | |
| return (anomalies_all, mse_all, top_indices_all, | |
| anomalies_comp, mse_comp, top_indices_comp, | |
| model) | |
| def emotion_anomaly_detection(emotion_data, epochs=100, batch_size=64): | |
| device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
| X = torch.FloatTensor(emotion_data.values).to(device) | |
| if X.dim() == 1: | |
| X = X.unsqueeze(0).unsqueeze(2) # Add batch and feature dimensions | |
| elif X.dim() == 2: | |
| X = X.unsqueeze(0) # Add batch dimension | |
| model = LSTMAutoencoder(input_size=1).to(device) | |
| criterion = nn.MSELoss() | |
| optimizer = optim.Adam(model.parameters()) | |
| for epoch in range(epochs): | |
| model.train() | |
| optimizer.zero_grad() | |
| output = model(X) | |
| loss = criterion(output, X) | |
| loss.backward() | |
| optimizer.step() | |
| model.eval() | |
| with torch.no_grad(): | |
| reconstructed = model(X).squeeze(0).cpu().numpy() | |
| mse = np.mean(np.power(X.squeeze(0).cpu().numpy() - reconstructed, 2), axis=1) | |
| anomalies, top_indices = determine_optimal_anomalies(mse) | |
| return anomalies, mse, top_indices | |
| def normalize_scores(scores): | |
| min_score = np.min(scores) | |
| max_score = np.max(scores) | |
| if max_score == min_score: | |
| return np.full_like(scores, 100) | |
| return ((scores - min_score) / (max_score - min_score)) * 100 | |
| def plot_to_image(fig): | |
| buf = io.BytesIO() | |
| fig.savefig(buf, format='png', dpi=300, bbox_inches='tight') | |
| buf.seek(0) | |
| return buf | |
| def plot_anomaly_scores(df, anomaly_scores, top_indices, title, timecodes): | |
| plt.figure(figsize=(16, 8), dpi=300) | |
| fig, ax = plt.subplots(figsize=(16, 8)) | |
| df['Seconds'] = df['Timecode'].apply( | |
| lambda x: sum(float(t) * 60 ** i for i, t in enumerate(reversed(x.split(':'))))) | |
| normalized_scores = normalize_scores(anomaly_scores) | |
| seconds = df['Seconds'].values[1:] | |
| scores = normalized_scores[1:] | |
| ax.scatter(seconds, scores, color='blue', alpha=0.7, s=10) | |
| top_indices = [idx for idx in top_indices if idx > 0] | |
| ax.scatter(df['Seconds'].iloc[top_indices], normalized_scores[top_indices], color='red', s=50, zorder=5) | |
| # Calculate and plot baseline | |
| non_anomalous_scores = np.delete(normalized_scores, top_indices) | |
| baseline = np.mean(non_anomalous_scores) | |
| ax.axhline(y=baseline, color='black', linestyle='--', linewidth=2.5) | |
| ax.text(df['Seconds'].max(), baseline, f'Baseline ({baseline:.2f})', | |
| verticalalignment='bottom', horizontalalignment='right', color='black') | |
| grouped_timecodes = group_similar_timecodes([df['Timecode'].iloc[idx] for idx in top_indices], | |
| normalized_scores[top_indices]) | |
| for group in grouped_timecodes: | |
| max_score_idx = max(range(len(group)), key=lambda i: group[i][1]) | |
| timecode, score, idx = group[max_score_idx] | |
| ax.annotate(timecode, | |
| (df['Seconds'].iloc[top_indices[idx]], score), | |
| xytext=(5, 5), textcoords='offset points', | |
| fontsize=6, color='red') | |
| max_seconds = df['Seconds'].max() | |
| ax.set_xlim(0, max_seconds) | |
| num_ticks = 100 | |
| ax.set_xticks(np.linspace(0, max_seconds, num_ticks)) | |
| ax.set_xticklabels([f"{int(x // 60):02d}:{int(x % 60):02d}" for x in ax.get_xticks()], | |
| rotation=90, ha='center', va='top') | |
| ax.set_xlabel('Time') | |
| ax.set_ylabel('Anomaly Score') | |
| ax.set_title(title) | |
| ax.grid(True, linestyle='--', alpha=0.7) | |
| plt.tight_layout() | |
| plt.close() | |
| return fig | |
| def plot_emotion(df, emotion, anomaly_scores, top_indices, color, timecodes): | |
| plt.figure(figsize=(16, 8), dpi=300) | |
| fig, ax = plt.subplots(figsize=(16, 8)) | |
| df['Seconds'] = df['Timecode'].apply( | |
| lambda x: sum(float(t) * 60 ** i for i, t in enumerate(reversed(x.split(':'))))) | |
| seconds = df['Seconds'].values[1:] | |
| scores = anomaly_scores[1:] | |
| ax.scatter(seconds, scores, color=color, alpha=0.7, s=10) | |
| top_indices = [idx for idx in top_indices if idx > 0] | |
| ax.scatter(df['Seconds'].iloc[top_indices], anomaly_scores[top_indices], color='red', s=50, zorder=5) | |
| # Calculate and plot baseline | |
| non_anomalous_scores = np.delete(anomaly_scores, top_indices) | |
| baseline = np.mean(non_anomalous_scores) | |
| ax.axhline(y=baseline, color='black', linestyle='--', linewidth=2.5) | |
| ax.text(df['Seconds'].max(), baseline, f'Baseline ({baseline:.2f})', | |
| verticalalignment='bottom', horizontalalignment='right', color='black') | |
| grouped_timecodes = group_similar_timecodes([df['Timecode'].iloc[idx] for idx in top_indices], | |
| anomaly_scores[top_indices]) | |
| for group in grouped_timecodes: | |
| max_score_idx = max(range(len(group)), key=lambda i: group[i][1]) | |
| timecode, score, idx = group[max_score_idx] | |
| ax.annotate(timecode, | |
| (df['Seconds'].iloc[top_indices[idx]], score), | |
| xytext=(5, 5), textcoords='offset points', | |
| fontsize=6, color='red') | |
| max_seconds = df['Seconds'].max() | |
| ax.set_xlim(0, max_seconds) | |
| num_ticks = 100 | |
| ax.set_xticks(np.linspace(0, max_seconds, num_ticks)) | |
| ax.set_xticklabels([f"{int(x // 60):02d}:{int(x % 60):02d}" for x in ax.get_xticks()], | |
| rotation=90, ha='center', va='top') | |
| ax.set_xlabel('Time') | |
| ax.set_ylabel(f'{emotion.capitalize()} Anomaly Score') | |
| ax.set_title(f'{emotion.capitalize()} Anomaly Scores') | |
| ax.grid(True, linestyle='--', alpha=0.7) | |
| plt.tight_layout() | |
| plt.close() | |
| return fig | |
| def get_random_face_samples(organized_faces_folder, output_folder, largest_cluster, num_samples=100): | |
| face_samples = [] | |
| for cluster_folder in os.listdir(organized_faces_folder): | |
| if cluster_folder.startswith("person_"): | |
| person_folder = os.path.join(organized_faces_folder, cluster_folder) | |
| face_files = [f for f in os.listdir(person_folder) if f.endswith('.jpg')] | |
| if face_files: | |
| if int(cluster_folder.split('_')[1]) == largest_cluster: | |
| samples = np.random.choice(face_files, min(num_samples, len(face_files)), replace=False) | |
| else: | |
| samples = [np.random.choice(face_files)] | |
| for i, sample in enumerate(samples): | |
| face_path = os.path.join(person_folder, sample) | |
| output_path = os.path.join(output_folder, f"face_sample_{cluster_folder}_{i}.jpg") | |
| face_img = cv2.imread(face_path) | |
| if face_img is not None: | |
| small_face = cv2.resize(face_img, (160, 160)) | |
| cv2.imwrite(output_path, small_face) | |
| face_samples.append(output_path) | |
| return face_samples | |
| def process_video(video_path, num_components, desired_fps, batch_size, progress=gr.Progress()): | |
| output_folder = "output" | |
| os.makedirs(output_folder, exist_ok=True) | |
| with tempfile.TemporaryDirectory() as temp_dir: | |
| aligned_faces_folder = os.path.join(temp_dir, 'aligned_faces') | |
| organized_faces_folder = os.path.join(temp_dir, 'organized_faces') | |
| os.makedirs(aligned_faces_folder, exist_ok=True) | |
| os.makedirs(organized_faces_folder, exist_ok=True) | |
| clip = VideoFileClip(video_path) | |
| video_duration = clip.duration | |
| clip.close() | |
| progress(0, "Starting frame extraction") | |
| frames_folder = os.path.join(temp_dir, 'extracted_frames') | |
| def extraction_progress(percent, message): | |
| progress(percent / 100, f"Extracting frames") | |
| frame_count, original_fps = extract_frames(video_path, frames_folder, desired_fps, extraction_progress) | |
| progress(1, "Frame extraction complete") | |
| progress(0.3, "Processing frames") | |
| embeddings_by_frame, emotions_by_frame, aligned_face_paths = process_frames(frames_folder, aligned_faces_folder, | |
| frame_count, | |
| progress, batch_size) | |
| if not aligned_face_paths: | |
| return ("No faces were extracted from the video.", | |
| None, None, None, None, None, None, None, None, None) | |
| progress(0.6, "Clustering faces") | |
| embeddings = [embedding for _, embedding in embeddings_by_frame.items()] | |
| clusters = cluster_faces(embeddings) | |
| num_clusters = len(set(clusters)) # Get the number of unique clusters | |
| progress(0.7, "Organizing faces") | |
| organize_faces_by_person(embeddings_by_frame, clusters, aligned_faces_folder, organized_faces_folder) | |
| progress(0.8, "Saving person data") | |
| df, largest_cluster = save_person_data_to_csv(embeddings_by_frame, emotions_by_frame, clusters, desired_fps, | |
| original_fps, temp_dir, num_components, video_duration) | |
| progress(0.85, "Getting face samples") | |
| face_samples = get_random_face_samples(organized_faces_folder, output_folder, largest_cluster) | |
| progress(0.9, "Performing anomaly detection") | |
| feature_columns = [col for col in df.columns if | |
| col not in ['Frame', 'Timecode', 'Time (Minutes)', 'Embedding_Index']] | |
| X = df[feature_columns].values | |
| try: | |
| anomalies_all, anomaly_scores_all, top_indices_all, anomalies_comp, anomaly_scores_comp, top_indices_comp, _ = lstm_anomaly_detection( | |
| X, feature_columns, batch_size=batch_size) | |
| anomaly_scores_all = normalize_scores(anomaly_scores_all) | |
| anomaly_scores_comp = normalize_scores(anomaly_scores_comp) | |
| emotion_anomalies = {} | |
| for emotion in ['fear', 'sad', 'angry', 'happy', 'surprise', 'neutral']: | |
| anomalies, scores, indices = emotion_anomaly_detection(df[emotion]) | |
| emotion_anomalies[emotion] = { | |
| 'anomalies': anomalies, | |
| 'scores': normalize_scores(scores), | |
| 'indices': indices | |
| } | |
| except Exception as e: | |
| print(f"Error details: {str(e)}") | |
| return f"Error in anomaly detection: {str(e)}", None, None, None, None, None, None, None, None, None | |
| progress(0.95, "Generating plots") | |
| try: | |
| anomaly_plot_all = plot_anomaly_scores(df, anomaly_scores_all, top_indices_all, | |
| "Facial Features + Emotions", | |
| df['Timecode'].iloc[top_indices_all].values) | |
| anomaly_plot_comp = plot_anomaly_scores(df, anomaly_scores_comp, top_indices_comp, "Facial Features", | |
| df['Timecode'].iloc[top_indices_comp].values) | |
| emotion_plots = [ | |
| plot_emotion(df, emotion, | |
| emotion_anomalies[emotion]['scores'], | |
| emotion_anomalies[emotion]['indices'], | |
| color, | |
| df['Timecode'].iloc[emotion_anomalies[emotion]['indices']].values) | |
| for emotion, color in zip(['fear', 'sad', 'angry', 'happy', 'surprise', 'neutral'], | |
| ['purple', 'green', 'orange', 'darkblue', 'gold', 'grey']) | |
| ] | |
| except Exception as e: | |
| return f"Error generating plots: {str(e)}", None, None, None, None, None, None, None, None, None | |
| progress(1.0, "Preparing results") | |
| results = f"Number of persons/clusters detected: {num_clusters}\n\n" | |
| results += f"Breakdown of persons/clusters:\n" | |
| for cluster_id in range(num_clusters): | |
| results += f"Person/Cluster {cluster_id + 1}: {len([c for c in clusters if c == cluster_id])} frames\n" | |
| results += f"\nAnomalies (Facial Features + Emotions):\n" | |
| results += "\n".join([f"{score:.2f} at {timecode}" for score, timecode in | |
| zip(anomaly_scores_all[top_indices_all[1:]], | |
| df['Timecode'].iloc[top_indices_all[1:]].values)]) | |
| results += f"\n\nAnomalies (Facial Features):\n" | |
| results += "\n".join([f"{score:.2f} at {timecode}" for score, timecode in | |
| zip(anomaly_scores_comp[top_indices_comp[1:]], | |
| df['Timecode'].iloc[top_indices_comp[1:]].values)]) | |
| for emotion in ['fear', 'sad', 'angry', 'happy', 'surprise', 'neutral']: | |
| results += f"\n\n{emotion.capitalize()} Anomalies:\n" | |
| results += "\n".join([f"{emotion_anomalies[emotion]['scores'][i]:.2f} at {df['Timecode'].iloc[i]}" | |
| for i in emotion_anomalies[emotion]['indices'] if i > 0]) | |
| return ( | |
| results, | |
| anomaly_plot_all, | |
| anomaly_plot_comp, | |
| *emotion_plots, | |
| face_samples | |
| ) | |
| iface = gr.Interface( | |
| fn=process_video, | |
| inputs=[ | |
| gr.Video(), | |
| gr.Slider(minimum=1, maximum=20, step=1, value=10, label="Number of Components"), | |
| gr.Slider(minimum=1, maximum=20, step=1, value=15, label="Desired FPS"), | |
| gr.Slider(minimum=1, maximum=32, step=1, value=8, label="Batch Size") | |
| ], | |
| outputs=[ | |
| gr.Textbox(label="Anomaly Detection Results"), | |
| gr.Plot(label="Anomaly Scores (Facial Features + Emotions)"), | |
| gr.Plot(label="Anomaly Scores (Facial Features)"), | |
| gr.Plot(label="Fear Anomalies"), | |
| gr.Plot(label="Sad Anomalies"), | |
| gr.Plot(label="Angry Anomalies"), | |
| gr.Plot(label="Happy Anomalies"), | |
| gr.Plot(label="Surprise Anomalies"), | |
| gr.Plot(label="Neutral Anomalies"), | |
| gr.Gallery(label="Random Samples of Detected Persons", columns=[5], rows=[2], height="auto") | |
| ], | |
| title="Facial Expressions Anomaly Detection", | |
| description=""" | |
| This application detects anomalies in facial expressions and emotions from a video input. | |
| It identifies distinct persons in the video and provides sample faces for each, with 10 samples for the most frequent person. | |
| Adjust the parameters as needed: | |
| - Number of Components: Complexity of the facial expression model | |
| - Desired FPS: Frames per second to analyze (lower for faster processing) | |
| - Batch Size: Affects processing speed and memory usage | |
| Click on any graph to enlarge it. | |
| """, | |
| allow_flagging="never" | |
| ) | |
| if __name__ == "__main__": | |
| iface.launch() |