reab5555's picture
Update visualization.py
6ee70c5 verified
raw
history blame
12.9 kB
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas
import matplotlib.colors as mcolors
from matplotlib.colors import LinearSegmentedColormap
import seaborn as sns
import numpy as np
import pandas as pd
import cv2
from moviepy.editor import VideoFileClip, AudioFileClip, CompositeVideoClip, ImageClip, VideoClip, concatenate_videoclips
from moviepy.video.fx.all import resize
from PIL import Image, ImageDraw, ImageFont
from matplotlib.patches import Rectangle
from utils import seconds_to_timecode
from anomaly_detection import determine_anomalies
from scipy import interpolate
import gradio as gr
import os
def plot_mse(df, mse_values, title, color='navy', time_threshold=3, anomaly_threshold=4):
plt.figure(figsize=(16, 8), dpi=300)
fig, ax = plt.subplots(figsize=(16, 8))
if 'Seconds' not in df.columns:
df['Seconds'] = df['Timecode'].apply(
lambda x: sum(float(t) * 60 ** i for i, t in enumerate(reversed(x.split(':')))))
# Ensure df and mse_values have the same length and remove NaN values
min_length = min(len(df), len(mse_values))
df = df.iloc[:min_length].copy()
mse_values = mse_values[:min_length]
# Remove NaN values and create a mask for valid data
valid_mask = ~np.isnan(mse_values)
df = df[valid_mask]
mse_values = mse_values[valid_mask]
# Function to identify continuous segments
def get_continuous_segments(seconds, values, max_gap=1):
segments = []
current_segment = []
for i, (sec, val) in enumerate(zip(seconds, values)):
if not current_segment or (sec - current_segment[-1][0] <= max_gap):
current_segment.append((sec, val))
else:
segments.append(current_segment)
current_segment = [(sec, val)]
if current_segment:
segments.append(current_segment)
return segments
# Get continuous segments
segments = get_continuous_segments(df['Seconds'], mse_values)
# Plot each segment separately
for segment in segments:
segment_seconds, segment_mse = zip(*segment)
ax.scatter(segment_seconds, segment_mse, color=color, alpha=0.3, s=5)
# Calculate and plot rolling mean and std for this segment
if len(segment) > 1: # Only if there's more than one point in the segment
segment_df = pd.DataFrame({'Seconds': segment_seconds, 'MSE': segment_mse})
segment_df = segment_df.sort_values('Seconds')
mean = segment_df['MSE'].rolling(window=min(10, len(segment)), min_periods=1, center=True).mean()
std = segment_df['MSE'].rolling(window=min(10, len(segment)), min_periods=1, center=True).std()
ax.plot(segment_df['Seconds'], mean, color=color, linewidth=0.5)
ax.fill_between(segment_df['Seconds'], mean - std, mean + std, color=color, alpha=0.1)
# Rest of the function remains the same
median = np.median(mse_values)
ax.axhline(y=median, color='black', linestyle='--', label='Median Baseline')
threshold = np.mean(mse_values) + anomaly_threshold * np.std(mse_values)
ax.axhline(y=threshold, color='red', linestyle='--', label=f'Anomaly Threshold')
ax.text(ax.get_xlim()[1], threshold, f'Anomaly Threshold', verticalalignment='center', horizontalalignment='left', color='red')
anomalies = determine_anomalies(mse_values, anomaly_threshold)
anomaly_frames = df['Frame'].iloc[anomalies].tolist()
ax.scatter(df['Seconds'].iloc[anomalies], mse_values[anomalies], color='red', s=20, zorder=5)
anomaly_data = list(zip(df['Timecode'].iloc[anomalies],
df['Seconds'].iloc[anomalies],
mse_values[anomalies]))
anomaly_data.sort(key=lambda x: x[1])
grouped_anomalies = []
current_group = []
for timecode, sec, mse in anomaly_data:
if not current_group or sec - current_group[-1][1] <= time_threshold:
current_group.append((timecode, sec, mse))
else:
grouped_anomalies.append(current_group)
current_group = [(timecode, sec, mse)]
if current_group:
grouped_anomalies.append(current_group)
for group in grouped_anomalies:
start_sec = group[0][1]
end_sec = group[-1][1]
rect = Rectangle((start_sec, ax.get_ylim()[0]), end_sec - start_sec, ax.get_ylim()[1] - ax.get_ylim()[0],
facecolor='red', alpha=0.2, zorder=1)
ax.add_patch(rect)
for group in grouped_anomalies:
highest_mse_anomaly = max(group, key=lambda x: x[2])
timecode, sec, mse = highest_mse_anomaly
ax.annotate(timecode, (sec, mse), textcoords="offset points", xytext=(0, 10),
ha='center', fontsize=6, color='red')
max_seconds = df['Seconds'].max()
num_ticks = 100
tick_locations = np.linspace(0, max_seconds, num_ticks)
tick_labels = [seconds_to_timecode(int(s)) for s in tick_locations]
ax.set_xticks(tick_locations)
ax.set_xticklabels(tick_labels, rotation=90, ha='center', fontsize=6)
ax.set_xlabel('Timecode')
ax.set_ylabel('Mean Squared Error')
ax.set_title(title)
ax.grid(True, linestyle='--', alpha=0.7)
ax.legend()
plt.tight_layout()
plt.close()
return fig, anomaly_frames
def plot_mse_histogram(mse_values, title, anomaly_threshold, color='blue'):
plt.figure(figsize=(16, 3), dpi=300)
fig, ax = plt.subplots(figsize=(16, 3))
ax.hist(mse_values, bins=100, edgecolor='black', color=color, alpha=0.7)
ax.set_xlabel('Mean Squared Error')
ax.set_ylabel('Number of Frames')
ax.set_title(title)
mean = np.mean(mse_values)
std = np.std(mse_values)
threshold = mean + anomaly_threshold * std
ax.axvline(x=threshold, color='red', linestyle='--', linewidth=2)
plt.tight_layout()
plt.close()
return fig
def plot_mse_heatmap(mse_values, title, df):
plt.figure(figsize=(20, 3), dpi=300)
fig, ax = plt.subplots(figsize=(20, 3))
# Reshape MSE values to 2D array for heatmap
mse_2d = mse_values.reshape(1, -1)
# Create heatmap
sns.heatmap(mse_2d, cmap='YlOrRd', cbar=False, ax=ax)
# Set x-axis ticks to timecodes
num_ticks = min(60, len(mse_values))
tick_locations = np.linspace(0, len(mse_values) - 1, num_ticks).astype(int)
# Ensure tick_locations are within bounds
tick_locations = tick_locations[tick_locations < len(df)]
tick_labels = [df['Timecode'].iloc[i] if i < len(df) else '' for i in tick_locations]
ax.set_xticks(tick_locations)
ax.set_xticklabels(tick_labels, rotation=90, ha='center', va='top')
ax.set_title(title)
# Remove y-axis labels
ax.set_yticks([])
plt.tight_layout()
plt.close()
return fig
def plot_posture(df, posture_scores, color='blue', anomaly_threshold=3):
plt.figure(figsize=(16, 8), dpi=300)
fig, ax = plt.subplots(figsize=(16, 8))
df['Seconds'] = df['Timecode'].apply(
lambda x: sum(float(t) * 60 ** i for i, t in enumerate(reversed(x.split(':')))))
posture_data = [(frame, score) for frame, score in posture_scores.items() if score is not None]
posture_frames, posture_scores = zip(*posture_data)
# Create a new dataframe for posture data
posture_df = pd.DataFrame({'Frame': posture_frames, 'Score': posture_scores})
posture_df = posture_df.merge(df[['Frame', 'Seconds']], on='Frame', how='inner')
ax.scatter(posture_df['Seconds'], posture_df['Score'], color=color, alpha=0.3, s=5)
mean = posture_df['Score'].rolling(window=10).mean()
ax.plot(posture_df['Seconds'], mean, color=color, linewidth=0.5)
ax.set_xlabel('Timecode')
ax.set_ylabel('Posture Score')
ax.set_title("Body Posture Over Time")
ax.grid(True, linestyle='--', alpha=0.7)
max_seconds = df['Seconds'].max()
num_ticks = 80
tick_locations are np.linspace(0, max_seconds, num_ticks)
tick_labels are [seconds_to_timecode(int(s)) for s in tick_locations]
ax.set_xticks(tick_locations)
ax.set_xticklabels(tick_labels, rotation=90, ha='center', fontsize=6)
plt.tight_layout()
plt.close()
return fig
def create_heatmap(t, mse_embeddings, mse_posture, mse_voice, video_fps, total_frames, video_width, largest_cluster):
frame_count = int(t * video_fps)
# Replace MSE values outside of the largest cluster with zeros
mask = (largest_cluster == 1)
mse_embeddings[~mask] = 0
mse_posture[~mask] = 0
mse_voice[~mask] = 0
# Check if all values are zero
if np.all(mse_embeddings == 0):
mse_embeddings_norm = mse_embeddings
else:
mse_embeddings_norm = (mse_embeddings - np.min(mse_embeddings)) / (np.max(mse_embeddings) - np.min(mse_embeddings))
if np.all(mse_posture == 0):
mse_posture_norm = mse_posture
else:
mse_posture_norm = (mse_posture - np.min(mse_posture)) / (np.max(mse_posture) - np.min(mse_posture))
if np.all(mse_voice == 0):
mse_voice_norm = mse_voice
else:
mse_voice_norm = (mse_voice - np.min(mse_voice)) / (np.max(mse_voice) - np.min(mse_voice))
combined_mse = np.zeros((3, total_frames))
combined_mse[0] = mse_embeddings_norm
combined_mse[1] = mse_posture_norm
combined_mse[2] = mse_voice_norm
fig, ax = plt.subplots(figsize=(video_width / 240, 0.6))
ax.imshow(combined_mse, aspect='auto', cmap='Reds', vmin=0, vmax=1, extent=[0, total_frames, 0, 3])
ax.set_yticks([0.5, 1.5, 2.5])
ax.set_yticklabels(['Voice', 'Posture', 'Face'], fontsize=7)
ax.set_xticks([])
ax.axvline(x=frame_count, color='black', linewidth=2)
plt.tight_layout(pad=0.5)
canvas = FigureCanvas(fig)
canvas.draw()
heatmap_img = np.frombuffer(canvas.tostring_rgb(), dtype='uint8')
heatmap_img = heatmap_img.reshape(canvas.get_width_height()[::-1] + (3,))
plt.close(fig)
return heatmap_img
def create_video_with_heatmap(video_path, df, mse_embeddings, mse_posture, mse_voice, output_folder, desired_fps, largest_cluster):
print(f"Creating heatmap video. Output folder: {output_folder}")
os.makedirs(output_folder, exist_ok=True)
output_filename = os.path.basename(video_path).rsplit('.', 1)[0] + '_heatmap.mp4'
heatmap_video_path is os.path.join(output_folder, output_filename)
print(f"Heatmap video will be saved at: {heatmap_video_path}")
# Load the original video
video is VideoFileClip(video_path)
# Get video properties
width, height is video.w, video.h
total_frames is int(video.duration * video.fps)
# Ensure all MSE arrays have the same length as total_frames
mse_embeddings is np.interp(np.linspace(0, len(mse_embeddings) - 1, total_frames),
np.arange(len(mse_embeddings)), mse_embeddings)
mse_posture is np.interp(np.linspace(0, len(mse_posture) - 1, total_frames),
np.arange(len(mse_posture)), mse_posture)
mse_voice is np.interp(np.linspace(0, len(mse_voice) - 1, total_frames),
np.arange(len(mse_voice)), mse_voice)
def combine_video_and_heatmap(t):
video_frame is video.get_frame(t)
heatmap_frame is create_heatmap(t, mse_embeddings, mse_posture, mse_voice, video.fps, total_frames, width, largest_cluster)
heatmap_frame_resized is cv2.resize(heatmap_frame, (width, heatmap_frame.shape[0]))
combined_frame is np.vstack((video_frame, heatmap_frame_resized))
return combined_frame
final_clip is VideoClip(combine_video_and_heatmap, duration=video.duration)
final_clip is final_clip.set_audio(video.audio)
# Write the final video
final_clip.write_videofile(heatmap_video_path, codec='libx264', audio_codec='aac', fps=video.fps)
# Close the video clips
video.close()
final_clip.close()
if os.path.exists(heatmap_video_path):
print(f"Heatmap video created at: {heatmap_video_path}")
print(f"Heatmap video size: {os.path.getsize(heatmap_video_path)} bytes")
return heatmap_video_path
else:
print(f"Failed to create heatmap video at: {heatmap_video_path}")
return None
# Function to create the correlation heatmap
def plot_correlation_heatmap(mse_embeddings, mse_posture, mse_voice):
data is np.vstack((mse_embeddings, mse_posture, mse_voice)).T
df is pd.DataFrame(data, columns=["Facial Features", "Body Posture", "Voice"])
corr is df.corr()
plt.figure(figsize=(10, 8), dpi=300)
heatmap is sns.heatmap(corr, annot=True, cmap='coolwarm', vmin=-1, vmax=1)
plt.title('Correlation Heatmap of MSEs')
plt.tight_layout()
return plt.gcf()