|
import os |
|
import cv2 |
|
import numpy as np |
|
import torch |
|
import torch.nn as nn |
|
import torch.optim as optim |
|
from facenet_pytorch import InceptionResnetV1, MTCNN |
|
import mediapipe as mp |
|
from fer import FER |
|
from sklearn.cluster import KMeans |
|
from sklearn.preprocessing import StandardScaler, MinMaxScaler |
|
from sklearn.metrics import silhouette_score |
|
from scipy.spatial.distance import cdist |
|
import umap |
|
import pandas as pd |
|
import matplotlib.pyplot as plt |
|
from matplotlib.ticker import MaxNLocator |
|
import gradio as gr |
|
import tempfile |
|
|
|
|
|
device = 'cuda' if torch.cuda.is_available() else 'cpu' |
|
|
|
mtcnn = MTCNN(keep_all=False, device=device, thresholds=[0.999, 0.999, 0.999], min_face_size=100, selection_method='largest') |
|
model = InceptionResnetV1(pretrained='vggface2').eval().to(device) |
|
mp_face_mesh = mp.solutions.face_mesh |
|
face_mesh = mp_face_mesh.FaceMesh(static_image_mode=False, max_num_faces=1, min_detection_confidence=0.5) |
|
emotion_detector = FER(mtcnn=False) |
|
|
|
def frame_to_timecode(frame_num, original_fps, desired_fps): |
|
total_seconds = frame_num / original_fps |
|
hours = int(total_seconds // 3600) |
|
minutes = int((total_seconds % 3600) // 60) |
|
seconds = int(total_seconds % 60) |
|
milliseconds = int((total_seconds - int(total_seconds)) * 1000) |
|
return f"{hours:02d}:{minutes:02d}:{seconds:02d}.{milliseconds:03d}" |
|
|
|
def get_face_embedding_and_emotion(face_img): |
|
face_tensor = torch.tensor(face_img).permute(2, 0, 1).unsqueeze(0).float() / 255 |
|
face_tensor = (face_tensor - 0.5) / 0.5 |
|
face_tensor = face_tensor.to(device) |
|
with torch.no_grad(): |
|
embedding = model(face_tensor) |
|
|
|
emotions = emotion_detector.detect_emotions(face_img) |
|
if emotions: |
|
emotion_dict = emotions[0]['emotions'] |
|
else: |
|
emotion_dict = {e: 0 for e in ['angry', 'disgust', 'fear', 'happy', 'sad', 'surprise', 'neutral']} |
|
|
|
return embedding.cpu().numpy().flatten(), emotion_dict |
|
|
|
def alignFace(img): |
|
img_raw = img.copy() |
|
results = face_mesh.process(cv2.cvtColor(img, cv2.COLOR_BGR2RGB)) |
|
if not results.multi_face_landmarks: |
|
return None |
|
landmarks = results.multi_face_landmarks[0].landmark |
|
left_eye = np.array([[landmarks[33].x, landmarks[33].y], [landmarks[160].x, landmarks[160].y], |
|
[landmarks[158].x, landmarks[158].y], [landmarks[144].x, landmarks[144].y], |
|
[landmarks[153].x, landmarks[153].y], [landmarks[145].x, landmarks[145].y]]) |
|
right_eye = np.array([[landmarks[362].x, landmarks[362].y], [landmarks[385].x, landmarks[385].y], |
|
[landmarks[387].x, landmarks[387].y], [landmarks[263].x, landmarks[263].y], |
|
[landmarks[373].x, landmarks[373].y], [landmarks[380].x, landmarks[380].y]]) |
|
left_eye_center = left_eye.mean(axis=0).astype(np.int32) |
|
right_eye_center = right_eye.mean(axis=0).astype(np.int32) |
|
dY = right_eye_center[1] - left_eye_center[1] |
|
dX = right_eye_center[0] - left_eye_center[0] |
|
angle = np.degrees(np.arctan2(dY, dX)) |
|
desired_angle = 0 |
|
angle_diff = desired_angle - angle |
|
height, width = img_raw.shape[:2] |
|
center = (width // 2, height // 2) |
|
rotation_matrix = cv2.getRotationMatrix2D(center, angle_diff, 1) |
|
new_img = cv2.warpAffine(img_raw, rotation_matrix, (width, height)) |
|
return new_img |
|
|
|
def extract_and_align_faces_from_video(video_path, aligned_faces_folder, desired_fps): |
|
video = cv2.VideoCapture(video_path) |
|
if not video.isOpened(): |
|
print(f"Error: Could not open video file at {video_path}") |
|
return {}, {}, desired_fps, 0 |
|
frame_count = int(video.get(cv2.CAP_PROP_FRAME_COUNT)) |
|
original_fps = video.get(cv2.CAP_PROP_FPS) |
|
if frame_count == 0: |
|
print(f"Error: Video file at {video_path} appears to be empty") |
|
return {}, {}, desired_fps, 0 |
|
embeddings_by_frame = {} |
|
emotions_by_frame = {} |
|
|
|
for frame_num in range(0, frame_count, int(original_fps / desired_fps)): |
|
video.set(cv2.CAP_PROP_POS_FRAMES, frame_num) |
|
ret, frame = video.read() |
|
if not ret or frame is None: |
|
print(f"Error: Could not read frame {frame_num}") |
|
continue |
|
try: |
|
boxes, probs = mtcnn.detect(frame) |
|
if boxes is not None and len(boxes) > 0: |
|
box = boxes[0] |
|
if probs[0] >= 0.99: |
|
x1, y1, x2, y2 = [int(b) for b in box] |
|
face = frame[y1:y2, x1:x2] |
|
aligned_face = alignFace(face) |
|
if aligned_face is not None: |
|
aligned_face_resized = cv2.resize(aligned_face, (160, 160)) |
|
output_path = os.path.join(aligned_faces_folder, f"frame_{frame_num}_face.jpg") |
|
cv2.imwrite(output_path, aligned_face_resized) |
|
embedding, emotion = get_face_embedding_and_emotion(aligned_face_resized) |
|
embeddings_by_frame[frame_num] = embedding |
|
emotions_by_frame[frame_num] = emotion |
|
except Exception as e: |
|
print(f"Error processing frame {frame_num}: {str(e)}") |
|
continue |
|
|
|
video.release() |
|
return embeddings_by_frame, emotions_by_frame, desired_fps, original_fps |
|
|
|
def cluster_embeddings(embeddings): |
|
if len(embeddings) < 2: |
|
print("Not enough embeddings for clustering. Assigning all to one cluster.") |
|
return np.zeros(len(embeddings), dtype=int) |
|
n_clusters = min(3, len(embeddings)) |
|
scaler = StandardScaler() |
|
embeddings_scaled = scaler.fit_transform(embeddings) |
|
kmeans = KMeans(n_clusters=n_clusters, random_state=42, n_init=10) |
|
clusters = kmeans.fit_predict(embeddings_scaled) |
|
return clusters |
|
|
|
def organize_faces_by_person(embeddings_by_frame, clusters, aligned_faces_folder, organized_faces_folder): |
|
for (frame_num, embedding), cluster in zip(embeddings_by_frame.items(), clusters): |
|
person_folder = os.path.join(organized_faces_folder, f"person_{cluster}") |
|
os.makedirs(person_folder, exist_ok=True) |
|
src = os.path.join(aligned_faces_folder, f"frame_{frame_num}_face.jpg") |
|
dst = os.path.join(person_folder, f"frame_{frame_num}_face.jpg") |
|
shutil.copy(src, dst) |
|
|
|
def save_person_data_to_csv(embeddings_by_frame, emotions_by_frame, clusters, desired_fps, original_fps, output_folder, num_components): |
|
emotions = ['angry', 'disgust', 'fear', 'happy', 'sad', 'neutral'] |
|
person_data = {} |
|
|
|
for (frame_num, embedding), (_, emotion_dict), cluster in zip(embeddings_by_frame.items(), |
|
emotions_by_frame.items(), clusters): |
|
if cluster not in person_data: |
|
person_data[cluster] = [] |
|
person_data[cluster].append((frame_num, embedding, {e: emotion_dict[e] for e in emotions})) |
|
|
|
largest_cluster = max(person_data, key=lambda k: len(person_data[k])) |
|
|
|
data = person_data[largest_cluster] |
|
data.sort(key=lambda x: x[0]) |
|
frames, embeddings, emotions_data = zip(*data) |
|
|
|
embeddings_array = np.array(embeddings) |
|
np.save(os.path.join(output_folder, 'face_embeddings.npy'), embeddings_array) |
|
|
|
reducer = umap.UMAP(n_components=num_components, random_state=1) |
|
embeddings_reduced = reducer.fit_transform(embeddings) |
|
|
|
scaler = MinMaxScaler(feature_range=(0, 1)) |
|
embeddings_reduced_normalized = scaler.fit_transform(embeddings_reduced) |
|
|
|
timecodes = [frame_to_timecode(frame, original_fps, desired_fps) for frame in frames] |
|
times_in_minutes = [frame / (original_fps * 60) for frame in frames] |
|
|
|
df_data = { |
|
'Frame': frames, |
|
'Timecode': timecodes, |
|
'Time (Minutes)': times_in_minutes, |
|
'Embedding_Index': range(len(embeddings)) |
|
} |
|
|
|
for i in range(num_components): |
|
df_data[f'Comp {i + 1}'] = embeddings_reduced_normalized[:, i] |
|
|
|
for emotion in emotions: |
|
df_data[emotion] = [e[emotion] for e in emotions_data] |
|
|
|
df = pd.DataFrame(df_data) |
|
|
|
return df, largest_cluster |
|
|
|
class LSTMAutoencoder(nn.Module): |
|
def __init__(self, input_size, hidden_size=64, num_layers=2): |
|
super(LSTMAutoencoder, self).__init__() |
|
self.input_size = input_size |
|
self.hidden_size = hidden_size |
|
self.num_layers = num_layers |
|
|
|
self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True) |
|
self.fc = nn.Linear(hidden_size, input_size) |
|
|
|
def forward(self, x): |
|
_, (hidden, _) = self.lstm(x) |
|
out = self.fc(hidden[-1]) |
|
return out |
|
|
|
def lstm_anomaly_detection(X, feature_columns, num_anomalies=10, epochs=100, batch_size=64): |
|
device = 'cuda' if torch.cuda.is_available() else 'cpu' |
|
|
|
X = torch.FloatTensor(X).to(device) |
|
|
|
train_size = int(0.85 * len(X)) |
|
X_train, X_val = X[:train_size], X[train_size:] |
|
|
|
model = LSTMAutoencoder(input_size=len(feature_columns)).to(device) |
|
criterion = nn.MSELoss() |
|
optimizer = optim.Adam(model.parameters()) |
|
|
|
for epoch in range(epochs): |
|
model.train() |
|
optimizer.zero_grad() |
|
output_train = model(X_train.unsqueeze(0)) |
|
loss_train = criterion(output_train, X_train) |
|
loss_train.backward() |
|
optimizer.step() |
|
|
|
model.eval() |
|
with torch.no_grad(): |
|
output_val = model(X_val.unsqueeze(0)) |
|
loss_val = criterion(output_val, X_val) |
|
|
|
model.eval() |
|
with torch.no_grad(): |
|
reconstructed = model(X.unsqueeze(0)).squeeze(0).cpu().numpy() |
|
|
|
mse = np.mean(np.power(X.cpu().numpy() - reconstructed, 2), axis=1) |
|
|
|
top_indices = mse.argsort()[-num_anomalies:][::-1] |
|
anomalies = np.zeros(len(mse), dtype=bool) |
|
anomalies[top_indices] = True |
|
|
|
return anomalies, mse, top_indices, model |
|
|
|
def plot_anomaly_scores(df, anomaly_scores, top_indices, title): |
|
fig, ax = plt.subplots(figsize=(16, 8)) |
|
bars = ax.bar(range(len(df)), anomaly_scores, width=0.8) |
|
for i in top_indices: |
|
bars[i].set_color('red') |
|
ax.set_xlabel('Timecode') |
|
ax.set_ylabel('Anomaly Score') |
|
ax.set_title(f'Anomaly Scores Over Time ({title})') |
|
ax.xaxis.set_major_locator(MaxNLocator(nbins=100)) |
|
ticks = ax.get_xticks() |
|
ax.set_xticklabels([df['Timecode'].iloc[int(tick)] if tick >= 0 and tick < len(df) else '' for tick in ticks], rotation=90, ha='right') |
|
plt.tight_layout() |
|
return fig |
|
|
|
def plot_emotion(df, emotion): |
|
fig, ax = plt.subplots(figsize=(16, 8)) |
|
values = df[emotion].values |
|
bars = ax.bar(range(len(df)), values, width=0.8) |
|
top_10_indices = np.argsort(values)[-10:] |
|
for i, bar in enumerate(bars): |
|
if i in top_10_indices: |
|
bar.set_color('red') |
|
ax.set_xlabel('Timecode') |
|
ax.set_ylabel(f'{emotion.capitalize()} Score') |
|
ax.set_title(f'{emotion.capitalize()} Scores Over Time') |
|
ax.xaxis.set_major_locator(MaxNLocator(nbins=100)) |
|
ticks = ax.get_xticks() |
|
ax.set_xticklabels([df['Timecode'].iloc[int(tick)] if tick >= 0 and tick < len(df) else '' for tick in ticks], rotation=90, ha='right') |
|
plt.tight_layout() |
|
return fig |
|
|
|
def process_video(video_path, num_anomalies, num_components, desired_fps, batch_size, progress=gr.Progress()): |
|
with tempfile.TemporaryDirectory() as temp_dir: |
|
aligned_faces_folder = os.path.join(temp_dir, 'aligned_faces') |
|
organized_faces_folder = os.path.join(temp_dir, 'organized_faces') |
|
os.makedirs(aligned_faces_folder, exist_ok=True) |
|
os.makedirs(organized_faces_folder, exist_ok=True) |
|
|
|
progress(0.1, "Extracting and aligning faces") |
|
embeddings_by_frame, emotions_by_frame, _, original_fps = extract_and_align_faces_from_video(video_path, aligned_faces_folder, desired_fps) |
|
|
|
if not embeddings_by_frame: |
|
return "No faces were extracted from the video.", None, None, None, None |
|
|
|
progress(0.3, "Clustering embeddings") |
|
embeddings = list(embeddings_by_frame.values()) |
|
clusters = cluster_embeddings(embeddings) |
|
|
|
progress(0.4, "Organizing faces") |
|
organize_faces_by_person(embeddings_by_frame, clusters, aligned_faces_folder, organized_faces_folder) |
|
|
|
progress(0.5, "Saving person data") |
|
df, largest_cluster = save_person_data_to_csv(embeddings_by_frame, emotions_by_frame, clusters, desired_fps, original_fps, temp_dir, num_components) |
|
|
|
progress(0.6, "Performing anomaly detection") |
|
feature_columns = [col for col in df.columns if col not in ['Frame', 'Timecode', 'Time (Minutes)', 'Embedding_Index']] |
|
anomalies_all, anomaly_scores_all, top_indices_all, _ = lstm_anomaly_detection(df[feature_columns].values, feature_columns, num_anomalies=num_anomalies, batch_size=batch_size) |
|
|
|
progress(0.8, "Generating plots") |
|
anomaly_plot = plot_anomaly_scores(df, anomaly_scores_all, top_indices_all, "All Features") |
|
emotion_plots = [plot_emotion(df, emotion) for emotion in ['fear', 'sad', 'angry']] |
|
|
|
progress(0.9, "Preparing results") |
|
results = f"Top {num_anomalies} anomalies (All Features):\n" |
|
results += "\n".join([f"{score:.4f} at {timecode}" for score, timecode in |
|
zip(anomaly_scores_all[top_indices_all], df['Timecode'].iloc[top_indices_all].values)]) |
|
|
|
progress(1.0, "Complete") |
|
return results, anomaly_plot, *emotion_plots |
|
|
|
|
|
iface = gr.Interface( |
|
fn=process_video, |
|
inputs=[ |
|
gr.Video(), |
|
gr.Slider(minimum=1, maximum=20, step=1, value=10, label="Number of Anomalies"), |
|
gr.Slider(minimum=2, maximum=5, step=1, value=3, label="Number of Components"), |
|
gr.Slider(minimum=1, maximum=30, step=1, value=20, label="Desired FPS"), |
|
gr.Slider(minimum=1, maximum=64, step=1, value=16, label="Batch Size") |
|
], |
|
outputs=[ |
|
gr.Textbox(label="Anomaly Detection Results"), |
|
gr.Plot(label="Anomaly Scores"), |
|
gr.Plot(label="Fear Scores"), |
|
gr.Plot(label="Sad Scores"), |
|
gr.Plot(label="Angry Scores") |
|
], |
|
title="Facial Expressions Anomaly Detection", |
|
description="Upload a video to detect anomalies in facial expressions and emotions. Adjust parameters as needed." |
|
) |
|
|
|
iface.launch() |