reab5555's picture
Update app.py
353d877 verified
raw
history blame
18.9 kB
import os
import cv2
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from facenet_pytorch import InceptionResnetV1, MTCNN
import mediapipe as mp
from fer import FER
from sklearn.cluster import KMeans
from sklearn.preprocessing import StandardScaler, MinMaxScaler
from sklearn.metrics import silhouette_score
from scipy.spatial.distance import cdist
import umap
import pandas as pd
import matplotlib.pyplot as plt
from matplotlib.ticker import MaxNLocator
import gradio as gr
import tempfile
import shutil
import subprocess
# Initialize models and other global variables
device = 'cuda' if torch.cuda.is_available() else 'cpu'
mtcnn = MTCNN(keep_all=False, device=device, thresholds=[0.999, 0.999, 0.999], min_face_size=100, selection_method='largest')
model = InceptionResnetV1(pretrained='vggface2').eval().to(device)
mp_face_mesh = mp.solutions.face_mesh
face_mesh = mp_face_mesh.FaceMesh(static_image_mode=False, max_num_faces=1, min_detection_confidence=0.5)
emotion_detector = FER(mtcnn=False)
def frame_to_timecode(frame_num, original_fps, desired_fps):
total_seconds = frame_num / original_fps
hours = int(total_seconds // 3600)
minutes = int((total_seconds % 3600) // 60)
seconds = int(total_seconds % 60)
milliseconds = int((total_seconds - int(total_seconds)) * 1000)
return f"{hours:02d}:{minutes:02d}:{seconds:02d}.{milliseconds:03d}"
def get_face_embedding_and_emotion(face_img):
face_tensor = torch.tensor(face_img).permute(2, 0, 1).unsqueeze(0).float() / 255
face_tensor = (face_tensor - 0.5) / 0.5
face_tensor = face_tensor.to(device)
with torch.no_grad():
embedding = model(face_tensor)
emotions = emotion_detector.detect_emotions(face_img)
if emotions:
emotion_dict = emotions[0]['emotions']
else:
emotion_dict = {e: 0 for e in ['angry', 'disgust', 'fear', 'happy', 'sad', 'surprise', 'neutral']}
return embedding.cpu().numpy().flatten(), emotion_dict
def alignFace(img):
img_raw = img.copy()
results = face_mesh.process(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
if not results.multi_face_landmarks:
return None
landmarks = results.multi_face_landmarks[0].landmark
left_eye = np.array([[landmarks[33].x, landmarks[33].y], [landmarks[160].x, landmarks[160].y],
[landmarks[158].x, landmarks[158].y], [landmarks[144].x, landmarks[144].y],
[landmarks[153].x, landmarks[153].y], [landmarks[145].x, landmarks[145].y]])
right_eye = np.array([[landmarks[362].x, landmarks[362].y], [landmarks[385].x, landmarks[385].y],
[landmarks[387].x, landmarks[387].y], [landmarks[263].x, landmarks[263].y],
[landmarks[373].x, landmarks[373].y], [landmarks[380].x, landmarks[380].y]])
left_eye_center = left_eye.mean(axis=0).astype(np.int32)
right_eye_center = right_eye.mean(axis=0).astype(np.int32)
dY = right_eye_center[1] - left_eye_center[1]
dX = right_eye_center[0] - left_eye_center[0]
angle = np.degrees(np.arctan2(dY, dX))
desired_angle = 0
angle_diff = desired_angle - angle
height, width = img_raw.shape[:2]
center = (width // 2, height // 2)
rotation_matrix = cv2.getRotationMatrix2D(center, angle_diff, 1)
new_img = cv2.warpAffine(img_raw, rotation_matrix, (width, height))
return new_img
def extract_frames(video_path, output_folder, fps):
os.makedirs(output_folder, exist_ok=True)
command = [
'ffmpeg',
'-i', video_path,
'-vf', f'fps={fps}',
f'{output_folder}/frame_%04d.jpg'
]
try:
result = subprocess.run(command, check=True, capture_output=True, text=True)
print(f"FFmpeg stdout: {result.stdout}")
print(f"FFmpeg stderr: {result.stderr}")
except subprocess.CalledProcessError as e:
print(f"Error extracting frames: {e}")
print(f"FFmpeg stdout: {e.stdout}")
print(f"FFmpeg stderr: {e.stderr}")
raise
import fractions
def extract_and_align_faces_from_video(video_path, aligned_faces_folder, desired_fps):
print(f"Processing video: {video_path}")
# Extract frames using FFmpeg
frames_folder = os.path.join(os.path.dirname(aligned_faces_folder), 'extracted_frames')
extract_frames(video_path, frames_folder, desired_fps)
# Get video info
ffprobe_command = [
'ffprobe',
'-v', 'error',
'-select_streams', 'v:0',
'-count_packets',
'-show_entries', 'stream=nb_read_packets,r_frame_rate',
'-of', 'csv=p=0',
video_path
]
try:
ffprobe_output = subprocess.check_output(ffprobe_command, universal_newlines=True).strip().split(',')
print(f"FFprobe output: {ffprobe_output}") # Debugging output
if len(ffprobe_output) != 2:
raise ValueError(f"Unexpected FFprobe output format: {ffprobe_output}")
frame_count = ffprobe_output[0]
frame_rate = ffprobe_output[1]
print(f"Frame count (raw): {frame_count}") # Debugging output
print(f"Frame rate (raw): {frame_rate}") # Debugging output
# Convert frame count to int
try:
frame_count = int(frame_count)
except ValueError:
print(f"Warning: Could not convert frame count '{frame_count}' to int. Using fallback method.")
frame_count = len([f for f in os.listdir(frames_folder) if f.endswith('.jpg')])
# Convert fractional frame rate to float
try:
frac = fractions.Fraction(frame_rate)
original_fps = float(frac.numerator) / float(frac.denominator)
except (ValueError, ZeroDivisionError):
print(f"Warning: Could not convert frame rate '{frame_rate}' to float. Using fallback method.")
# Fallback: Count frames and divide by video duration
frame_count = len([f for f in os.listdir(frames_folder) if f.endswith('.jpg')])
duration_command = ['ffprobe', '-v', 'error', '-show_entries', 'format=duration', '-of', 'default=noprint_wrappers=1:nokey=1', video_path]
duration = float(subprocess.check_output(duration_command, universal_newlines=True).strip())
original_fps = frame_count / duration
except subprocess.CalledProcessError as e:
print(f"Error running FFprobe: {e}")
raise
except Exception as e:
print(f"Unexpected error processing video info: {e}")
raise
print(f"Total frames: {frame_count}, Original FPS: {original_fps}, Desired FPS: {desired_fps}")
embeddings_by_frame = {}
emotions_by_frame = {}
for frame_file in sorted(os.listdir(frames_folder)):
if frame_file.endswith('.jpg'):
frame_num = int(frame_file.split('_')[1].split('.')[0])
frame_path = os.path.join(frames_folder, frame_file)
frame = cv2.imread(frame_path)
if frame is None:
print(f"Skipping frame {frame_num}: Could not read frame")
continue
try:
boxes, probs = mtcnn.detect(frame)
if boxes is not None and len(boxes) > 0:
box = boxes[0]
if probs[0] >= 0.99:
x1, y1, x2, y2 = [int(b) for b in box]
face = frame[y1:y2, x1:x2]
if face.size == 0:
print(f"Skipping frame {frame_num}: Detected face region is empty")
continue
aligned_face = alignFace(face)
if aligned_face is not None:
aligned_face_resized = cv2.resize(aligned_face, (160, 160))
output_path = os.path.join(aligned_faces_folder, f"frame_{frame_num}_face.jpg")
cv2.imwrite(output_path, aligned_face_resized)
embedding, emotion = get_face_embedding_and_emotion(aligned_face_resized)
embeddings_by_frame[frame_num] = embedding
emotions_by_frame[frame_num] = emotion
except Exception as e:
print(f"Error processing frame {frame_num}: {str(e)}")
continue
return embeddings_by_frame, emotions_by_frame, desired_fps, original_fps
def cluster_embeddings(embeddings):
if len(embeddings) < 2:
print("Not enough embeddings for clustering. Assigning all to one cluster.")
return np.zeros(len(embeddings), dtype=int)
n_clusters = min(3, len(embeddings)) # Use at most 3 clusters
scaler = StandardScaler()
embeddings_scaled = scaler.fit_transform(embeddings)
kmeans = KMeans(n_clusters=n_clusters, random_state=42, n_init=10)
clusters = kmeans.fit_predict(embeddings_scaled)
return clusters
def organize_faces_by_person(embeddings_by_frame, clusters, aligned_faces_folder, organized_faces_folder):
for (frame_num, embedding), cluster in zip(embeddings_by_frame.items(), clusters):
person_folder = os.path.join(organized_faces_folder, f"person_{cluster}")
os.makedirs(person_folder, exist_ok=True)
src = os.path.join(aligned_faces_folder, f"frame_{frame_num}_face.jpg")
dst = os.path.join(person_folder, f"frame_{frame_num}_face.jpg")
shutil.copy(src, dst)
def save_person_data_to_csv(embeddings_by_frame, emotions_by_frame, clusters, desired_fps, original_fps, output_folder, num_components):
emotions = ['angry', 'disgust', 'fear', 'happy', 'sad', 'neutral']
person_data = {}
for (frame_num, embedding), (_, emotion_dict), cluster in zip(embeddings_by_frame.items(),
emotions_by_frame.items(), clusters):
if cluster not in person_data:
person_data[cluster] = []
person_data[cluster].append((frame_num, embedding, {e: emotion_dict[e] for e in emotions}))
largest_cluster = max(person_data, key=lambda k: len(person_data[k]))
data = person_data[largest_cluster]
data.sort(key=lambda x: x[0])
frames, embeddings, emotions_data = zip(*data)
embeddings_array = np.array(embeddings)
np.save(os.path.join(output_folder, 'face_embeddings.npy'), embeddings_array)
reducer = umap.UMAP(n_components=num_components, random_state=1)
embeddings_reduced = reducer.fit_transform(embeddings)
scaler = MinMaxScaler(feature_range=(0, 1))
embeddings_reduced_normalized = scaler.fit_transform(embeddings_reduced)
timecodes = [frame_to_timecode(frame, original_fps, desired_fps) for frame in frames]
times_in_minutes = [frame / (original_fps * 60) for frame in frames]
df_data = {
'Frame': frames,
'Timecode': timecodes,
'Time (Minutes)': times_in_minutes,
'Embedding_Index': range(len(embeddings))
}
for i in range(num_components):
df_data[f'Comp {i + 1}'] = embeddings_reduced_normalized[:, i]
for emotion in emotions:
df_data[emotion] = [e[emotion] for e in emotions_data]
df = pd.DataFrame(df_data)
return df, largest_cluster
class LSTMAutoencoder(nn.Module):
def __init__(self, input_size, hidden_size=64, num_layers=2):
super(LSTMAutoencoder, self).__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.num_layers = num_layers
self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True)
self.fc = nn.Linear(hidden_size, input_size)
def forward(self, x):
_, (hidden, _) = self.lstm(x)
out = self.fc(hidden[-1])
return out
def lstm_anomaly_detection(X, feature_columns, num_anomalies=10, epochs=100, batch_size=64):
device = 'cuda' if torch.cuda.is_available() else 'cpu'
X = torch.FloatTensor(X).to(device)
train_size = int(0.85 * len(X))
X_train, X_val = X[:train_size], X[train_size:]
model = LSTMAutoencoder(input_size=len(feature_columns)).to(device)
criterion = nn.MSELoss()
optimizer = optim.Adam(model.parameters())
for epoch in range(epochs):
model.train()
optimizer.zero_grad()
output_train = model(X_train.unsqueeze(0))
loss_train = criterion(output_train, X_train)
loss_train.backward()
optimizer.step()
model.eval()
with torch.no_grad():
output_val = model(X_val.unsqueeze(0))
loss_val = criterion(output_val, X_val)
model.eval()
with torch.no_grad():
reconstructed = model(X.unsqueeze(0)).squeeze(0).cpu().numpy()
mse = np.mean(np.power(X.cpu().numpy() - reconstructed, 2), axis=1)
top_indices = mse.argsort()[-num_anomalies:][::-1]
anomalies = np.zeros(len(mse), dtype=bool)
anomalies[top_indices] = True
return anomalies, mse, top_indices, model
def plot_anomaly_scores(df, anomaly_scores, top_indices, title):
fig, ax = plt.subplots(figsize=(16, 8))
bars = ax.bar(range(len(df)), anomaly_scores, width=0.8)
for i in top_indices:
bars[i].set_color('red')
ax.set_xlabel('Timecode')
ax.set_ylabel('Anomaly Score')
ax.set_title(f'Anomaly Scores Over Time ({title})')
ax.xaxis.set_major_locator(MaxNLocator(nbins=100))
ticks = ax.get_xticks()
ax.set_xticklabels([df['Timecode'].iloc[int(tick)] if tick >= 0 and tick < len(df) else '' for tick in ticks], rotation=90, ha='right')
plt.tight_layout()
return fig
def plot_emotion(df, emotion):
fig, ax = plt.subplots(figsize=(16, 8))
values = df[emotion].values
bars = ax.bar(range(len(df)), values, width=0.8)
top_10_indices = np.argsort(values)[-10:]
for i, bar in enumerate(bars):
if i in top_10_indices:
bar.set_color('red')
ax.set_xlabel('Timecode')
ax.set_ylabel(f'{emotion.capitalize()} Score')
ax.set_title(f'{emotion.capitalize()} Scores Over Time')
ax.xaxis.set_major_locator(MaxNLocator(nbins=100))
ticks = ax.get_xticks()
ax.set_xticklabels([df['Timecode'].iloc[int(tick)] if tick >= 0 and tick < len(df) else '' for tick in ticks], rotation=90, ha='right')
plt.tight_layout()
return fig
def process_video(video_path, num_anomalies, num_components, desired_fps, batch_size, progress=gr.Progress()):
with tempfile.TemporaryDirectory() as temp_dir:
aligned_faces_folder = os.path.join(temp_dir, 'aligned_faces')
organized_faces_folder = os.path.join(temp_dir, 'organized_faces')
os.makedirs(aligned_faces_folder, exist_ok=True)
os.makedirs(organized_faces_folder, exist_ok=True)
progress(0.1, "Extracting and aligning faces")
try:
embeddings_by_frame, emotions_by_frame, _, original_fps = extract_and_align_faces_from_video(video_path, aligned_faces_folder, desired_fps)
except Exception as e:
return f"Error extracting faces: {str(e)}", None, None, None, None
if not embeddings_by_frame:
return "No faces were extracted from the video.", None, None, None, None
progress(0.3, "Clustering embeddings")
embeddings = list(embeddings_by_frame.values())
clusters = cluster_embeddings(embeddings)
progress(0.4, "Organizing faces")
organize_faces_by_person(embeddings_by_frame, clusters, aligned_faces_folder, organized_faces_folder)
progress(0.5, "Saving person data")
df, largest_cluster = save_person_data_to_csv(embeddings_by_frame, emotions_by_frame, clusters, desired_fps, original_fps, temp_dir, num_components)
progress(0.6, "Performing anomaly detection")
feature_columns = [col for col in df.columns if col not in ['Frame', 'Timecode', 'Time (Minutes)', 'Embedding_Index']]
try:
anomalies_all, anomaly_scores_all, top_indices_all, _ = lstm_anomaly_detection(df[feature_columns].values, feature_columns, num_anomalies=num_anomalies, batch_size=batch_size)
except Exception as e:
return f"Error in anomaly detection: {str(e)}", None, None, None, None
progress(0.8, "Generating plots")
try:
anomaly_plot = plot_anomaly_scores(df, anomaly_scores_all, top_indices_all, "All Features")
emotion_plots = [plot_emotion(df, emotion) for emotion in ['fear', 'sad', 'angry']]
except Exception as e:
return f"Error generating plots: {str(e)}", None, None, None, None
progress(0.9, "Preparing results")
results = f"Top {num_anomalies} anomalies (All Features):\n"
results += "\n".join([f"{score:.4f} at {timecode}" for score, timecode in
zip(anomaly_scores_all[top_indices_all], df['Timecode'].iloc[top_indices_all].values)])
progress(1.0, "Complete")
return results, anomaly_plot, emotion_plots[0], emotion_plots[1], emotion_plots[2]
# Updated Gradio interface
iface = gr.Interface(
fn=process_video,
inputs=[
gr.Video(),
gr.Slider(minimum=1, maximum=20, step=1, value=10, label="Number of Anomalies"),
gr.Slider(minimum=2, maximum=5, step=1, value=3, label="Number of Components"),
gr.Slider(minimum=1, maximum=30, step=1, value=20, label="Desired FPS"),
gr.Slider(minimum=1, maximum=64, step=1, value=16, label="Batch Size")
],
outputs=[
gr.Textbox(label="Anomaly Detection Results"),
gr.Plot(label="Anomaly Scores").style(full_width=True, height=500),
gr.Plot(label="Fear Scores").style(full_width=True, height=500),
gr.Plot(label="Sad Scores").style(full_width=True, height=500),
gr.Plot(label="Angry Scores").style(full_width=True, height=500)
],
title="Facial Expressions Anomaly Detection",
description="""
This application detects anomalies in facial expressions and emotions from a video input.
It focuses on the most frequently appearing person in the video for analysis.
How it works:
1. The app extracts faces from the video frames.
2. It identifies the most frequent person (face) in the video.
3. For this person, it analyzes facial expressions and emotions over time.
4. It then detects anomalies in these expressions and emotions.
The graphs show anomaly scores and emotion intensities over time.
Click on any graph to view it in full size.
Adjust the parameters as needed:
- Number of Anomalies: How many top anomalies to detect
- Number of Components: Complexity of the facial expression model
- Desired FPS: Frames per second to analyze (lower for faster processing)
- Batch Size: Affects processing speed and memory usage
Upload a video and click 'Submit' to start the analysis.
"""
)
if __name__ == "__main__":
iface.launch()