File size: 9,817 Bytes
11e16fe
 
 
 
 
 
 
 
 
bd57c84
11e16fe
 
 
 
 
 
 
 
79bd6b6
11e16fe
 
79bd6b6
 
 
 
11e16fe
79bd6b6
 
 
 
 
 
 
 
 
 
 
 
 
11e16fe
79bd6b6
 
11e16fe
79bd6b6
11e16fe
79bd6b6
 
 
 
 
 
 
 
 
 
 
 
11e16fe
79bd6b6
11e16fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd57c84
11e16fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd57c84
11e16fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd57c84
11e16fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
abc304c
4d4ae71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
import pandas as pd
from matplotlib.patches import Rectangle
from utils import seconds_to_timecode
from anomaly_detection import determine_anomalies

def plot_mse(df, mse_values, title, color='navy', time_threshold=3, anomaly_threshold=4):
    plt.figure(figsize=(16, 8), dpi=300)
    fig, ax = plt.subplots(figsize=(16, 8))

    if 'Seconds' not in df.columns:
        df['Seconds'] = df['Timecode'].apply(
            lambda x: sum(float(t) * 60 ** i for i, t in enumerate(reversed(x.split(':')))))

    # Ensure df and mse_values have the same length and remove NaN values
    min_length = min(len(df), len(mse_values))
    df = df.iloc[:min_length].copy()
    mse_values = mse_values[:min_length]

    # Remove NaN values and create a mask for valid data
    valid_mask = ~np.isnan(mse_values)
    df = df[valid_mask]
    mse_values = mse_values[valid_mask]

    # Function to identify continuous segments
    def get_continuous_segments(seconds, values, max_gap=1):
        segments = []
        current_segment = []
        for i, (sec, val) in enumerate(zip(seconds, values)):
            if not current_segment or (sec - current_segment[-1][0] <= max_gap):
                current_segment.append((sec, val))
            else:
                segments.append(current_segment)
                current_segment = [(sec, val)]
        if current_segment:
            segments.append(current_segment)
        return segments

    # Get continuous segments
    segments = get_continuous_segments(df['Seconds'], mse_values)

    # Plot each segment separately
    for segment in segments:
        segment_seconds, segment_mse = zip(*segment)
        ax.scatter(segment_seconds, segment_mse, color=color, alpha=0.3, s=5)
        
        # Calculate and plot rolling mean and std for this segment
        if len(segment) > 1:  # Only if there's more than one point in the segment
            segment_df = pd.DataFrame({'Seconds': segment_seconds, 'MSE': segment_mse})
            segment_df = segment_df.sort_values('Seconds')
            mean = segment_df['MSE'].rolling(window=min(10, len(segment)), min_periods=1, center=True).mean()
            std = segment_df['MSE'].rolling(window=min(10, len(segment)), min_periods=1, center=True).std()
            
            ax.plot(segment_df['Seconds'], mean, color=color, linewidth=0.5)
            ax.fill_between(segment_df['Seconds'], mean - std, mean + std, color=color, alpha=0.1)

    # Rest of the function remains the same
    median = np.median(mse_values)
    ax.axhline(y=median, color='black', linestyle='--', label='Median Baseline')

    threshold = np.mean(mse_values) + anomaly_threshold * np.std(mse_values)
    ax.axhline(y=threshold, color='red', linestyle='--', label=f'Threshold: {anomaly_threshold:.1f}')
    ax.text(ax.get_xlim()[1], threshold, f'Threshold: {anomaly_threshold:.1f}', verticalalignment='center', horizontalalignment='left', color='red')

    anomalies = determine_anomalies(mse_values, anomaly_threshold)
    anomaly_frames = df['Frame'].iloc[anomalies].tolist()

    ax.scatter(df['Seconds'].iloc[anomalies], mse_values[anomalies], color='red', s=20, zorder=5)

    anomaly_data = list(zip(df['Timecode'].iloc[anomalies],
                            df['Seconds'].iloc[anomalies],
                            mse_values[anomalies]))
    anomaly_data.sort(key=lambda x: x[1])

    grouped_anomalies = []
    current_group = []
    for timecode, sec, mse in anomaly_data:
        if not current_group or sec - current_group[-1][1] <= time_threshold:
            current_group.append((timecode, sec, mse))
        else:
            grouped_anomalies.append(current_group)
            current_group = [(timecode, sec, mse)]
    if current_group:
        grouped_anomalies.append(current_group)

    for group in grouped_anomalies:
        start_sec = group[0][1]
        end_sec = group[-1][1]
        rect = Rectangle((start_sec, ax.get_ylim()[0]), end_sec - start_sec, ax.get_ylim()[1] - ax.get_ylim()[0],
                         facecolor='red', alpha=0.2, zorder=1)
        ax.add_patch(rect)

    for group in grouped_anomalies:
        highest_mse_anomaly = max(group, key=lambda x: x[2])
        timecode, sec, mse = highest_mse_anomaly
        ax.annotate(timecode, (sec, mse), textcoords="offset points", xytext=(0, 10),
                    ha='center', fontsize=6, color='red')

    max_seconds = df['Seconds'].max()
    num_ticks = 100
    tick_locations = np.linspace(0, max_seconds, num_ticks)
    tick_labels = [seconds_to_timecode(int(s)) for s in tick_locations]

    ax.set_xticks(tick_locations)
    ax.set_xticklabels(tick_labels, rotation=90, ha='center', fontsize=6)

    ax.set_xlabel('Timecode')
    ax.set_ylabel('Mean Squared Error')
    ax.set_title(title)

    ax.grid(True, linestyle='--', alpha=0.7)
    ax.legend()
    plt.tight_layout()
    plt.close()
    return fig, anomaly_frames

def plot_mse_histogram(mse_values, title, anomaly_threshold, color='blue'):
    plt.figure(figsize=(16, 3), dpi=300)
    fig, ax = plt.subplots(figsize=(16, 3))

    ax.hist(mse_values, bins=100, edgecolor='black', color=color, alpha=0.7)
    ax.set_xlabel('Mean Squared Error')
    ax.set_ylabel('Number of Samples')
    ax.set_title(title)

    mean = np.mean(mse_values)
    std = np.std(mse_values)
    threshold = mean + anomaly_threshold * std

    ax.axvline(x=threshold, color='red', linestyle='--', linewidth=2)

    plt.tight_layout()
    plt.close()
    return fig

def plot_mse_heatmap(mse_values, title, df):
    plt.figure(figsize=(20, 3), dpi=300)
    fig, ax = plt.subplots(figsize=(20, 3))

    # Reshape MSE values to 2D array for heatmap
    mse_2d = mse_values.reshape(1, -1)

    # Create heatmap
    sns.heatmap(mse_2d, cmap='YlOrRd', cbar=False, ax=ax)

    # Set x-axis ticks to timecodes
    num_ticks = 60
    tick_locations = np.linspace(0, len(mse_values) - 1, num_ticks).astype(int)
    tick_labels = [df['Timecode'].iloc[i] for i in tick_locations]

    ax.set_xticks(tick_locations)
    ax.set_xticklabels(tick_labels, rotation=90, ha='center', va='top')

    ax.set_title(title)

    # Remove y-axis labels
    ax.set_yticks([])

    plt.tight_layout()
    plt.close()
    return fig

def plot_posture(df, posture_scores, color='blue', anomaly_threshold=3):
    plt.figure(figsize=(16, 8), dpi=300)
    fig, ax = plt.subplots(figsize=(16, 8))

    df['Seconds'] = df['Timecode'].apply(
        lambda x: sum(float(t) * 60 ** i for i, t in enumerate(reversed(x.split(':')))))

    posture_data = [(frame, score) for frame, score in posture_scores.items() if score is not None]
    posture_frames, posture_scores = zip(*posture_data)

    # Create a new dataframe for posture data
    posture_df = pd.DataFrame({'Frame': posture_frames, 'Score': posture_scores})


    posture_df = posture_df.merge(df[['Frame', 'Seconds']], on='Frame', how='inner')

    ax.scatter(posture_df['Seconds'], posture_df['Score'], color=color, alpha=0.3, s=5)
    mean = posture_df['Score'].rolling(window=10).mean()
    ax.plot(posture_df['Seconds'], mean, color=color, linewidth=0.5)

    ax.set_xlabel('Timecode')
    ax.set_ylabel('Posture Score')
    ax.set_title("Body Posture Over Time")

    ax.grid(True, linestyle='--', alpha=0.7)

    max_seconds = df['Seconds'].max()
    num_ticks = 80
    tick_locations = np.linspace(0, max_seconds, num_ticks)
    tick_labels = [seconds_to_timecode(int(s)) for s in tick_locations]

    ax.set_xticks(tick_locations)
    ax.set_xticklabels(tick_labels, rotation=90, ha='center', fontsize=6)

    plt.tight_layout()
    plt.close()
    return fig


def create_video_with_heatmap(video_path, df, mse_embeddings, mse_posture, mse_voice, output_path):
    from matplotlib.backends.backend_agg import FigureCanvasAgg
    # Open the video
    cap = cv2.VideoCapture(video_path)
    fps = cap.get(cv2.CAP_PROP_FPS)
    width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
    height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
    
    # Create the output video writer
    fourcc = cv2.VideoWriter_fourcc(*'mp4v')
    out = cv2.VideoWriter(output_path, fourcc, fps, (width, height + 200))  # Additional 200 pixels for heatmap
    
    # Prepare the heatmap data
    heatmap_data = np.vstack((mse_embeddings, mse_posture, mse_voice))
    
    # Create a figure for the heatmap
    fig, ax = plt.subplots(figsize=(width/100, 2))
    im = ax.imshow(heatmap_data, aspect='auto', cmap='YlOrRd')
    ax.set_yticks([])
    ax.set_xticks([])
    plt.tight_layout()
    
    frame_count = 0
    total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
    
    while True:
        ret, frame = cap.read()
        if not ret:
            break
        
        # Update the heatmap with the current frame position
        ax.axvline(x=frame_count, color='r', linewidth=2)
        
        # Convert the matplotlib figure to an image
        canvas = FigureCanvasAgg(fig)
        canvas.draw()
        heatmap_img = np.frombuffer(canvas.tostring_rgb(), dtype='uint8')
        heatmap_img = heatmap_img.reshape(canvas.get_width_height()[::-1] + (3,))
        heatmap_img = cv2.resize(heatmap_img, (width, 200))
        
        # Combine the video frame and the heatmap
        combined_frame = np.vstack((frame, heatmap_img))
        
        # Add timecode to the frame
        timecode = df['Timecode'][frame_count] if frame_count < len(df) else "End"
        cv2.putText(combined_frame, f"Time: {timecode}", (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2)
        
        out.write(combined_frame)
        frame_count += 1
        
        # Remove the vertical line for the next iteration
        ax.lines.pop()
    
    cap.release()
    out.release()
    plt.close(fig)
    
    return output_path