File size: 14,133 Bytes
ad8946e dcfcb01 ad8946e 53590f8 ad8946e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 |
import os
import cv2
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from facenet_pytorch import InceptionResnetV1, MTCNN
import mediapipe as mp
from sklearn.cluster import KMeans
from sklearn.preprocessing import StandardScaler, MinMaxScaler
from sklearn.metrics import silhouette_score
from scipy.spatial.distance import cdist
import umap
import pandas as pd
import matplotlib.pyplot as plt
from matplotlib.ticker import MaxNLocator
import gradio as gr
import tempfile
# Initialize models and other global variables
device = 'cuda' if torch.cuda.is_available() else 'cpu'
mtcnn = MTCNN(keep_all=False, device=device, thresholds=[0.999, 0.999, 0.999], min_face_size=100, selection_method='largest')
model = InceptionResnetV1(pretrained='vggface2').eval().to(device)
mp_face_mesh = mp.solutions.face_mesh
face_mesh = mp_face_mesh.FaceMesh(static_image_mode=False, max_num_faces=1, min_detection_confidence=0.5)
def frame_to_timecode(frame_num, original_fps, desired_fps):
total_seconds = frame_num / original_fps
hours = int(total_seconds // 3600)
minutes = int((total_seconds % 3600) // 60)
seconds = int(total_seconds % 60)
milliseconds = int((total_seconds - int(total_seconds)) * 1000)
return f"{hours:02d}:{minutes:02d}:{seconds:02d}.{milliseconds:03d}"
def get_face_embedding_and_emotion(face_img):
face_tensor = torch.tensor(face_img).permute(2, 0, 1).unsqueeze(0).float() / 255
face_tensor = (face_tensor - 0.5) / 0.5
face_tensor = face_tensor.to(device)
with torch.no_grad():
embedding = model(face_tensor)
# Placeholder for emotion detection
emotion_dict = {e: np.random.random() for e in ['angry', 'disgust', 'fear', 'happy', 'sad', 'surprise', 'neutral']}
return embedding.cpu().numpy().flatten(), emotion_dict
def alignFace(img):
img_raw = img.copy()
results = face_mesh.process(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
if not results.multi_face_landmarks:
return None
landmarks = results.multi_face_landmarks[0].landmark
left_eye = np.array([[landmarks[33].x, landmarks[33].y], [landmarks[160].x, landmarks[160].y],
[landmarks[158].x, landmarks[158].y], [landmarks[144].x, landmarks[144].y],
[landmarks[153].x, landmarks[153].y], [landmarks[145].x, landmarks[145].y]])
right_eye = np.array([[landmarks[362].x, landmarks[362].y], [landmarks[385].x, landmarks[385].y],
[landmarks[387].x, landmarks[387].y], [landmarks[263].x, landmarks[263].y],
[landmarks[373].x, landmarks[373].y], [landmarks[380].x, landmarks[380].y]])
left_eye_center = left_eye.mean(axis=0).astype(np.int32)
right_eye_center = right_eye.mean(axis=0).astype(np.int32)
dY = right_eye_center[1] - left_eye_center[1]
dX = right_eye_center[0] - left_eye_center[0]
angle = np.degrees(np.arctan2(dY, dX))
desired_angle = 0
angle_diff = desired_angle - angle
height, width = img_raw.shape[:2]
center = (width // 2, height // 2)
rotation_matrix = cv2.getRotationMatrix2D(center, angle_diff, 1)
new_img = cv2.warpAffine(img_raw, rotation_matrix, (width, height))
return new_img
def extract_and_align_faces_from_video(video_path, aligned_faces_folder, desired_fps):
video = cv2.VideoCapture(video_path)
if not video.isOpened():
print(f"Error: Could not open video file at {video_path}")
return {}, {}, desired_fps, 0
frame_count = int(video.get(cv2.CAP_PROP_FRAME_COUNT))
original_fps = video.get(cv2.CAP_PROP_FPS)
if frame_count == 0:
print(f"Error: Video file at {video_path} appears to be empty")
return {}, {}, desired_fps, 0
embeddings_by_frame = {}
emotions_by_frame = {}
for frame_num in range(0, frame_count, int(original_fps / desired_fps)):
video.set(cv2.CAP_PROP_POS_FRAMES, frame_num)
ret, frame = video.read()
if not ret or frame is None:
print(f"Error: Could not read frame {frame_num}")
continue
try:
boxes, probs = mtcnn.detect(frame)
if boxes is not None and len(boxes) > 0:
box = boxes[0]
if probs[0] >= 0.99:
x1, y1, x2, y2 = [int(b) for b in box]
face = frame[y1:y2, x1:x2]
aligned_face = alignFace(face)
if aligned_face is not None:
aligned_face_resized = cv2.resize(aligned_face, (160, 160))
output_path = os.path.join(aligned_faces_folder, f"frame_{frame_num}_face.jpg")
cv2.imwrite(output_path, aligned_face_resized)
embedding, emotion = get_face_embedding_and_emotion(aligned_face_resized)
embeddings_by_frame[frame_num] = embedding
emotions_by_frame[frame_num] = emotion
except Exception as e:
print(f"Error processing frame {frame_num}: {str(e)}")
continue
video.release()
return embeddings_by_frame, emotions_by_frame, desired_fps, original_fps
def cluster_embeddings(embeddings):
if len(embeddings) < 2:
print("Not enough embeddings for clustering. Assigning all to one cluster.")
return np.zeros(len(embeddings), dtype=int)
n_clusters = min(3, len(embeddings)) # Use at most 3 clusters
scaler = StandardScaler()
embeddings_scaled = scaler.fit_transform(embeddings)
kmeans = KMeans(n_clusters=n_clusters, random_state=42, n_init=10)
clusters = kmeans.fit_predict(embeddings_scaled)
return clusters
def organize_faces_by_person(embeddings_by_frame, clusters, aligned_faces_folder, organized_faces_folder):
for (frame_num, embedding), cluster in zip(embeddings_by_frame.items(), clusters):
person_folder = os.path.join(organized_faces_folder, f"person_{cluster}")
os.makedirs(person_folder, exist_ok=True)
src = os.path.join(aligned_faces_folder, f"frame_{frame_num}_face.jpg")
dst = os.path.join(person_folder, f"frame_{frame_num}_face.jpg")
shutil.copy(src, dst)
def save_person_data_to_csv(embeddings_by_frame, emotions_by_frame, clusters, desired_fps, original_fps, output_folder, num_components):
emotions = ['angry', 'disgust', 'fear', 'happy', 'sad', 'neutral']
person_data = {}
for (frame_num, embedding), (_, emotion_dict), cluster in zip(embeddings_by_frame.items(),
emotions_by_frame.items(), clusters):
if cluster not in person_data:
person_data[cluster] = []
person_data[cluster].append((frame_num, embedding, {e: emotion_dict[e] for e in emotions}))
largest_cluster = max(person_data, key=lambda k: len(person_data[k]))
data = person_data[largest_cluster]
data.sort(key=lambda x: x[0])
frames, embeddings, emotions_data = zip(*data)
embeddings_array = np.array(embeddings)
np.save(os.path.join(output_folder, 'face_embeddings.npy'), embeddings_array)
reducer = umap.UMAP(n_components=num_components, random_state=1)
embeddings_reduced = reducer.fit_transform(embeddings)
scaler = MinMaxScaler(feature_range=(0, 1))
embeddings_reduced_normalized = scaler.fit_transform(embeddings_reduced)
timecodes = [frame_to_timecode(frame, original_fps, desired_fps) for frame in frames]
times_in_minutes = [frame / (original_fps * 60) for frame in frames]
df_data = {
'Frame': frames,
'Timecode': timecodes,
'Time (Minutes)': times_in_minutes,
'Embedding_Index': range(len(embeddings))
}
for i in range(num_components):
df_data[f'Comp {i + 1}'] = embeddings_reduced_normalized[:, i]
for emotion in emotions:
df_data[emotion] = [e[emotion] for e in emotions_data]
df = pd.DataFrame(df_data)
return df, largest_cluster
class LSTMAutoencoder(nn.Module):
def __init__(self, input_size, hidden_size=64, num_layers=2):
super(LSTMAutoencoder, self).__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.num_layers = num_layers
self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True)
self.fc = nn.Linear(hidden_size, input_size)
def forward(self, x):
_, (hidden, _) = self.lstm(x)
out = self.fc(hidden[-1])
return out
def lstm_anomaly_detection(X, feature_columns, num_anomalies=10, epochs=100, batch_size=64):
device = 'cuda' if torch.cuda.is_available() else 'cpu'
X = torch.FloatTensor(X).to(device)
train_size = int(0.85 * len(X))
X_train, X_val = X[:train_size], X[train_size:]
model = LSTMAutoencoder(input_size=len(feature_columns)).to(device)
criterion = nn.MSELoss()
optimizer = optim.Adam(model.parameters())
for epoch in range(epochs):
model.train()
optimizer.zero_grad()
output_train = model(X_train.unsqueeze(0))
loss_train = criterion(output_train, X_train)
loss_train.backward()
optimizer.step()
model.eval()
with torch.no_grad():
output_val = model(X_val.unsqueeze(0))
loss_val = criterion(output_val, X_val)
model.eval()
with torch.no_grad():
reconstructed = model(X.unsqueeze(0)).squeeze(0).cpu().numpy()
mse = np.mean(np.power(X.cpu().numpy() - reconstructed, 2), axis=1)
top_indices = mse.argsort()[-num_anomalies:][::-1]
anomalies = np.zeros(len(mse), dtype=bool)
anomalies[top_indices] = True
return anomalies, mse, top_indices, model
def plot_anomaly_scores(df, anomaly_scores, top_indices, title):
fig, ax = plt.subplots(figsize=(16, 8))
bars = ax.bar(range(len(df)), anomaly_scores, width=0.8)
for i in top_indices:
bars[i].set_color('red')
ax.set_xlabel('Timecode')
ax.set_ylabel('Anomaly Score')
ax.set_title(f'Anomaly Scores Over Time ({title})')
ax.xaxis.set_major_locator(MaxNLocator(nbins=100))
ticks = ax.get_xticks()
ax.set_xticklabels([df['Timecode'].iloc[int(tick)] if tick >= 0 and tick < len(df) else '' for tick in ticks], rotation=90, ha='right')
plt.tight_layout()
return fig
def plot_emotion(df, emotion):
fig, ax = plt.subplots(figsize=(16, 8))
values = df[emotion].values
bars = ax.bar(range(len(df)), values, width=0.8)
top_10_indices = np.argsort(values)[-10:]
for i, bar in enumerate(bars):
if i in top_10_indices:
bar.set_color('red')
ax.set_xlabel('Timecode')
ax.set_ylabel(f'{emotion.capitalize()} Score')
ax.set_title(f'{emotion.capitalize()} Scores Over Time')
ax.xaxis.set_major_locator(MaxNLocator(nbins=100))
ticks = ax.get_xticks()
ax.set_xticklabels([df['Timecode'].iloc[int(tick)] if tick >= 0 and tick < len(df) else '' for tick in ticks], rotation=90, ha='right')
plt.tight_layout()
return fig
def process_video(video_path, num_anomalies, num_components, desired_fps, batch_size, progress=gr.Progress()):
with tempfile.TemporaryDirectory() as temp_dir:
aligned_faces_folder = os.path.join(temp_dir, 'aligned_faces')
organized_faces_folder = os.path.join(temp_dir, 'organized_faces')
os.makedirs(aligned_faces_folder, exist_ok=True)
os.makedirs(organized_faces_folder, exist_ok=True)
progress(0.1, "Extracting and aligning faces")
embeddings_by_frame, emotions_by_frame, _, original_fps = extract_and_align_faces_from_video(video_path, aligned_faces_folder, desired_fps)
if not embeddings_by_frame:
return "No faces were extracted from the video.", None, None, None, None
progress(0.3, "Clustering embeddings")
embeddings = list(embeddings_by_frame.values())
clusters = cluster_embeddings(embeddings)
progress(0.4, "Organizing faces")
organize_faces_by_person(embeddings_by_frame, clusters, aligned_faces_folder, organized_faces_folder)
progress(0.5, "Saving person data")
df, largest_cluster = save_person_data_to_csv(embeddings_by_frame, emotions_by_frame, clusters, desired_fps, original_fps, temp_dir, num_components)
progress(0.6, "Performing anomaly detection")
feature_columns = [col for col in df.columns if col not in ['Frame', 'Timecode', 'Time (Minutes)', 'Embedding_Index']]
anomalies_all, anomaly_scores_all, top_indices_all, _ = lstm_anomaly_detection(df[feature_columns].values, feature_columns, num_anomalies=num_anomalies, batch_size=batch_size)
progress(0.8, "Generating plots")
anomaly_plot = plot_anomaly_scores(df, anomaly_scores_all, top_indices_all, "All Features")
emotion_plots = [plot_emotion(df, emotion) for emotion in ['fear', 'sad', 'angry']]
progress(0.9, "Preparing results")
results = f"Top {num_anomalies} anomalies (All Features):\n"
results += "\n".join([f"{score:.4f} at {timecode}" for score, timecode in
zip(anomaly_scores_all[top_indices_all], df['Timecode'].iloc[top_indices_all].values)])
progress(1.0, "Complete")
return results, anomaly_plot, *emotion_plots
# Gradio interface
iface = gr.Interface(
fn=process_video,
inputs=[
gr.Video(),
gr.Slider(minimum=1, maximum=20, step=1, value=10, label="Number of Anomalies"),
gr.Slider(minimum=2, maximum=5, step=1, value=3, label="Number of Components"),
gr.Slider(minimum=1, maximum=30, step=1, value=20, label="Desired FPS"),
gr.Slider(minimum=1, maximum=64, step=1, value=16, label="Batch Size")
],
outputs=[
gr.Textbox(label="Anomaly Detection Results"),
gr.Plot(label="Anomaly Scores"),
gr.Plot(label="Fear Scores"),
gr.Plot(label="Sad Scores"),
gr.Plot(label="Angry Scores")
],
title="Video Anomaly Detection",
description="Upload a video to detect anomalies in facial expressions and emotions. Adjust parameters as needed."
)
iface.launch() |