import torch from PIL import Image import requests from openai import OpenAI from transformers import (Owlv2Processor, Owlv2ForObjectDetection, AutoProcessor, AutoModelForMaskGeneration) import matplotlib.pyplot as plt import matplotlib.patches as patches import base64 import io import numpy as np import gradio as gr import json import os from dotenv import load_dotenv # Load environment variables load_dotenv() OPENAI_API_KEY = os.getenv('OPENAI_API_KEY') def resize_and_compress(image, max_width=800, max_height=800, quality=50): """Resize (if > max_width/height) and compress the image to keep Base64 under ~1MB.""" if not isinstance(image, Image.Image): raise ValueError("Input must be a PIL Image") width, height = image.size if width > max_width or height > max_height: aspect_ratio = width / height if aspect_ratio > 1: new_width = max_width new_height = int(new_width / aspect_ratio) else: new_height = max_height new_width = int(new_height * aspect_ratio) image = image.resize((new_width, new_height), Image.Resampling.LANCZOS) buffered = io.BytesIO() # Save as JPEG with reduced quality image.save(buffered, format="JPEG", quality=quality) buffered.seek(0) return base64.b64encode(buffered.getvalue()).decode('utf-8') def analyze_image(image): client = OpenAI(api_key=OPENAI_API_KEY) # Step 1: Resize + compress to keep the Base64 string under 1 MB base64_image = resize_and_compress(image, max_width=800, max_height=800, quality=50) # Build the list-of-dicts prompt prompt_dict = [ { "type": "text", "text": """Your task is to determine if the image is surprising or not. If the image is surprising, which element is surprising (max 6 words). Otherwise, 'NA'. Also rate how surprising (1-5). Return JSON like: { "label": "[surprising or not surprising]", "element": "[element]", "rating": [1-5] } """ }, { "type": "image_url", "image_url": { "url": f"data:image/jpeg;base64,{base64_image}" } } ] # JSON-encode to ensure content is a string json_prompt = json.dumps(prompt_dict) # Send request response = client.chat.completions.create( model="gpt-4o-mini", messages=[ { "role": "user", "content": json_prompt } ], max_tokens=100, temperature=0.1, response_format={"type": "json_object"} ) return response.choices[0].message.content def show_mask(mask, ax, random_color=False): if random_color: color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0) else: color = np.array([1.0, 0.0, 0.0, 0.5]) if len(mask.shape) == 4: mask = mask[0, 0] mask_image = np.zeros((*mask.shape, 4), dtype=np.float32) mask_image[mask > 0] = color ax.imshow(mask_image) def process_image_detection(image, target_label, surprise_rating): device = "cuda" if torch.cuda.is_available() else "cpu" # Get original image DPI and size original_dpi = image.info.get('dpi', (72, 72)) original_size = image.size # Calculate relative font size based on image dimensions base_fontsize = min(original_size) / 40 # Adjust this divisor as needed owlv2_processor = Owlv2Processor.from_pretrained("google/owlv2-base-patch16") owlv2_model = Owlv2ForObjectDetection.from_pretrained("google/owlv2-base-patch16").to(device) sam_processor = AutoProcessor.from_pretrained("facebook/sam-vit-base") sam_model = AutoModelForMaskGeneration.from_pretrained("facebook/sam-vit-base").to(device) image_np = np.array(image) inputs = owlv2_processor(text=[target_label], images=image, return_tensors="pt").to(device) with torch.no_grad(): outputs = owlv2_model(**inputs) target_sizes = torch.tensor([image.size[::-1]]).to(device) results = owlv2_processor.post_process_object_detection(outputs, target_sizes=target_sizes)[0] dpi = 300 # Increased DPI for better text rendering figsize = (original_size[0] / dpi, original_size[1] / dpi) fig = plt.figure(figsize=figsize, dpi=dpi) ax = plt.Axes(fig, [0., 0., 1., 1.]) fig.add_axes(ax) plt.imshow(image) scores = results["scores"] if len(scores) > 0: max_score_idx = scores.argmax().item() max_score = scores[max_score_idx].item() if max_score > 0.2: box = results["boxes"][max_score_idx].cpu().numpy() sam_inputs = sam_processor( image, input_boxes=[[[box[0], box[1], box[2], box[3]]]], return_tensors="pt" ).to(device) with torch.no_grad(): sam_outputs = sam_model(**sam_inputs) masks = sam_processor.image_processor.post_process_masks( sam_outputs.pred_masks.cpu(), sam_inputs["original_sizes"].cpu(), sam_inputs["reshaped_input_sizes"].cpu() ) mask = masks[0].numpy() if isinstance(masks[0], torch.Tensor) else masks[0] show_mask(mask, ax=ax) # Draw rectangle around the detected area rect = patches.Rectangle( (box[0], box[1]), box[2] - box[0], box[3] - box[1], linewidth=max(2, min(original_size) / 500), edgecolor='red', facecolor='none' ) ax.add_patch(rect) # Confidence score plt.text( box[0], box[1] - base_fontsize, f'{max_score:.2f}', color='red', fontsize=base_fontsize, fontweight='bold', bbox=dict(facecolor='white', alpha=0.7, edgecolor='none', pad=2) ) # Label + rating plt.text( box[2] + base_fontsize / 2, box[1], f'Unexpected (Rating: {surprise_rating}/5)\n{target_label}', color='red', fontsize=base_fontsize, fontweight='bold', bbox=dict(facecolor='white', alpha=0.7, edgecolor='none', pad=2), verticalalignment='bottom' ) plt.axis('off') # Save figure to buffer buf = io.BytesIO() plt.savefig( buf, format='png', dpi=dpi, bbox_inches='tight', pad_inches=0, metadata={'dpi': original_dpi} ) buf.seek(0) plt.close() # Convert buffer back to PIL output_image = Image.open(buf) output_image = output_image.resize(original_size, Image.Resampling.LANCZOS) final_buf = io.BytesIO() output_image.save(final_buf, format='PNG', dpi=original_dpi) final_buf.seek(0) return final_buf def process_and_analyze(image): if image is None: return None, "Please upload an image first." if OPENAI_API_KEY is None: return None, "OpenAI API key not found in environment variables." try: # Handle different input types if isinstance(image, tuple): image = image[0] if isinstance(image, np.ndarray): image = Image.fromarray(image) if not isinstance(image, Image.Image): raise ValueError("Invalid image format") # Analyze image with GPT gpt_response = analyze_image(image) response_data = json.loads(gpt_response) # If surprising, try to detect the element if response_data["label"].lower() == "surprising" and response_data["element"].lower() != "na": result_buf = process_image_detection(image, response_data["element"], response_data["rating"]) result_image = Image.open(result_buf) analysis_text = ( f"Label: {response_data['label']}\n" f"Element: {response_data['element']}\n" f"Rating: {response_data['rating']}/5" ) return result_image, analysis_text else: # If not surprising or element=NA return image, "Not Surprising" except Exception as e: return None, f"Error processing image: {str(e)}" def create_interface(): with gr.Blocks() as demo: gr.Markdown("# Image Surprise Analysis") with gr.Row(): with gr.Column(): input_image = gr.Image(label="Upload Image") analyze_btn = gr.Button("Analyze Image") with gr.Column(): output_image = gr.Image(label="Processed Image") output_text = gr.Textbox(label="Analysis Results") analyze_btn.click( fn=process_and_analyze, inputs=[input_image], outputs=[output_image, output_text] ) return demo if __name__ == "__main__": demo = create_interface() demo.launch()